Experimental Dataset for Fiber Optic Specklegram Sensing Under Thermal Conditions and Use in a Deep Learning Interrogation Scheme

This dataset comprises specklegram images acquired from a multimode optical fiber subjected to varying thermal conditions. Designed for training neural networks focused on developing Fiber Optic Specklegram Sensors (FSSs), these experimental data enable the detection of changes in speckle patterns c...

Full description

Saved in:
Bibliographic Details
Main Authors: Francisco J. Vélez, Juan D. Arango, Víctor H. Aristizábal, Carlos Trujillo, Jorge A. Herrera-Ramírez
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Data
Subjects:
Online Access:https://www.mdpi.com/2306-5729/10/4/44
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850144977194057728
author Francisco J. Vélez
Juan D. Arango
Víctor H. Aristizábal
Carlos Trujillo
Jorge A. Herrera-Ramírez
author_facet Francisco J. Vélez
Juan D. Arango
Víctor H. Aristizábal
Carlos Trujillo
Jorge A. Herrera-Ramírez
author_sort Francisco J. Vélez
collection DOAJ
description This dataset comprises specklegram images acquired from a multimode optical fiber subjected to varying thermal conditions. Designed for training neural networks focused on developing Fiber Optic Specklegram Sensors (FSSs), these experimental data enable the detection of changes in speckle patterns corresponding to applied temperature variations. The dataset includes 24,528 images captured over a temperature range from 25 °C to 200 °C, with incremental steps of approximately 0.175 °C. Key acquisition parameters include a wavelength of 633 nm, a sensing zone length of 20 mm, and a multimode fiber with a core diameter of 62.5 μm. This dataset supports developing and validating temperature-sensing models using fiber optic technology and can facilitate benchmarking against other experimental or synthetic datasets. Finally, an implementation is presented for utilizing the dataset in a deep learning interrogation scheme.
format Article
id doaj-art-bc855b992a9f4abd87f9ff0d87430689
institution OA Journals
issn 2306-5729
language English
publishDate 2025-03-01
publisher MDPI AG
record_format Article
series Data
spelling doaj-art-bc855b992a9f4abd87f9ff0d874306892025-08-20T02:28:12ZengMDPI AGData2306-57292025-03-011044410.3390/data10040044Experimental Dataset for Fiber Optic Specklegram Sensing Under Thermal Conditions and Use in a Deep Learning Interrogation SchemeFrancisco J. Vélez0Juan D. Arango1Víctor H. Aristizábal2Carlos Trujillo3Jorge A. Herrera-Ramírez4Facultad de Ingeniería, Universidad Cooperativa de Colombia, Medellín 050012, ColombiaFacultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050013, ColombiaFacultad de Ingeniería, Universidad Cooperativa de Colombia, Medellín 050012, ColombiaSchool of Applied Sciences and Engineering, EAFIT University, Medellín 050022, ColombiaFacultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050013, ColombiaThis dataset comprises specklegram images acquired from a multimode optical fiber subjected to varying thermal conditions. Designed for training neural networks focused on developing Fiber Optic Specklegram Sensors (FSSs), these experimental data enable the detection of changes in speckle patterns corresponding to applied temperature variations. The dataset includes 24,528 images captured over a temperature range from 25 °C to 200 °C, with incremental steps of approximately 0.175 °C. Key acquisition parameters include a wavelength of 633 nm, a sensing zone length of 20 mm, and a multimode fiber with a core diameter of 62.5 μm. This dataset supports developing and validating temperature-sensing models using fiber optic technology and can facilitate benchmarking against other experimental or synthetic datasets. Finally, an implementation is presented for utilizing the dataset in a deep learning interrogation scheme.https://www.mdpi.com/2306-5729/10/4/44optical sensorsspecklegramfiber optic sensingdeep learningtemperature measurement
spellingShingle Francisco J. Vélez
Juan D. Arango
Víctor H. Aristizábal
Carlos Trujillo
Jorge A. Herrera-Ramírez
Experimental Dataset for Fiber Optic Specklegram Sensing Under Thermal Conditions and Use in a Deep Learning Interrogation Scheme
Data
optical sensors
specklegram
fiber optic sensing
deep learning
temperature measurement
title Experimental Dataset for Fiber Optic Specklegram Sensing Under Thermal Conditions and Use in a Deep Learning Interrogation Scheme
title_full Experimental Dataset for Fiber Optic Specklegram Sensing Under Thermal Conditions and Use in a Deep Learning Interrogation Scheme
title_fullStr Experimental Dataset for Fiber Optic Specklegram Sensing Under Thermal Conditions and Use in a Deep Learning Interrogation Scheme
title_full_unstemmed Experimental Dataset for Fiber Optic Specklegram Sensing Under Thermal Conditions and Use in a Deep Learning Interrogation Scheme
title_short Experimental Dataset for Fiber Optic Specklegram Sensing Under Thermal Conditions and Use in a Deep Learning Interrogation Scheme
title_sort experimental dataset for fiber optic specklegram sensing under thermal conditions and use in a deep learning interrogation scheme
topic optical sensors
specklegram
fiber optic sensing
deep learning
temperature measurement
url https://www.mdpi.com/2306-5729/10/4/44
work_keys_str_mv AT franciscojvelez experimentaldatasetforfiberopticspecklegramsensingunderthermalconditionsanduseinadeeplearninginterrogationscheme
AT juandarango experimentaldatasetforfiberopticspecklegramsensingunderthermalconditionsanduseinadeeplearninginterrogationscheme
AT victorharistizabal experimentaldatasetforfiberopticspecklegramsensingunderthermalconditionsanduseinadeeplearninginterrogationscheme
AT carlostrujillo experimentaldatasetforfiberopticspecklegramsensingunderthermalconditionsanduseinadeeplearninginterrogationscheme
AT jorgeaherreraramirez experimentaldatasetforfiberopticspecklegramsensingunderthermalconditionsanduseinadeeplearninginterrogationscheme