Experimental Dataset for Fiber Optic Specklegram Sensing Under Thermal Conditions and Use in a Deep Learning Interrogation Scheme
This dataset comprises specklegram images acquired from a multimode optical fiber subjected to varying thermal conditions. Designed for training neural networks focused on developing Fiber Optic Specklegram Sensors (FSSs), these experimental data enable the detection of changes in speckle patterns c...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-03-01
|
| Series: | Data |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2306-5729/10/4/44 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850144977194057728 |
|---|---|
| author | Francisco J. Vélez Juan D. Arango Víctor H. Aristizábal Carlos Trujillo Jorge A. Herrera-Ramírez |
| author_facet | Francisco J. Vélez Juan D. Arango Víctor H. Aristizábal Carlos Trujillo Jorge A. Herrera-Ramírez |
| author_sort | Francisco J. Vélez |
| collection | DOAJ |
| description | This dataset comprises specklegram images acquired from a multimode optical fiber subjected to varying thermal conditions. Designed for training neural networks focused on developing Fiber Optic Specklegram Sensors (FSSs), these experimental data enable the detection of changes in speckle patterns corresponding to applied temperature variations. The dataset includes 24,528 images captured over a temperature range from 25 °C to 200 °C, with incremental steps of approximately 0.175 °C. Key acquisition parameters include a wavelength of 633 nm, a sensing zone length of 20 mm, and a multimode fiber with a core diameter of 62.5 μm. This dataset supports developing and validating temperature-sensing models using fiber optic technology and can facilitate benchmarking against other experimental or synthetic datasets. Finally, an implementation is presented for utilizing the dataset in a deep learning interrogation scheme. |
| format | Article |
| id | doaj-art-bc855b992a9f4abd87f9ff0d87430689 |
| institution | OA Journals |
| issn | 2306-5729 |
| language | English |
| publishDate | 2025-03-01 |
| publisher | MDPI AG |
| record_format | Article |
| series | Data |
| spelling | doaj-art-bc855b992a9f4abd87f9ff0d874306892025-08-20T02:28:12ZengMDPI AGData2306-57292025-03-011044410.3390/data10040044Experimental Dataset for Fiber Optic Specklegram Sensing Under Thermal Conditions and Use in a Deep Learning Interrogation SchemeFrancisco J. Vélez0Juan D. Arango1Víctor H. Aristizábal2Carlos Trujillo3Jorge A. Herrera-Ramírez4Facultad de Ingeniería, Universidad Cooperativa de Colombia, Medellín 050012, ColombiaFacultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050013, ColombiaFacultad de Ingeniería, Universidad Cooperativa de Colombia, Medellín 050012, ColombiaSchool of Applied Sciences and Engineering, EAFIT University, Medellín 050022, ColombiaFacultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050013, ColombiaThis dataset comprises specklegram images acquired from a multimode optical fiber subjected to varying thermal conditions. Designed for training neural networks focused on developing Fiber Optic Specklegram Sensors (FSSs), these experimental data enable the detection of changes in speckle patterns corresponding to applied temperature variations. The dataset includes 24,528 images captured over a temperature range from 25 °C to 200 °C, with incremental steps of approximately 0.175 °C. Key acquisition parameters include a wavelength of 633 nm, a sensing zone length of 20 mm, and a multimode fiber with a core diameter of 62.5 μm. This dataset supports developing and validating temperature-sensing models using fiber optic technology and can facilitate benchmarking against other experimental or synthetic datasets. Finally, an implementation is presented for utilizing the dataset in a deep learning interrogation scheme.https://www.mdpi.com/2306-5729/10/4/44optical sensorsspecklegramfiber optic sensingdeep learningtemperature measurement |
| spellingShingle | Francisco J. Vélez Juan D. Arango Víctor H. Aristizábal Carlos Trujillo Jorge A. Herrera-Ramírez Experimental Dataset for Fiber Optic Specklegram Sensing Under Thermal Conditions and Use in a Deep Learning Interrogation Scheme Data optical sensors specklegram fiber optic sensing deep learning temperature measurement |
| title | Experimental Dataset for Fiber Optic Specklegram Sensing Under Thermal Conditions and Use in a Deep Learning Interrogation Scheme |
| title_full | Experimental Dataset for Fiber Optic Specklegram Sensing Under Thermal Conditions and Use in a Deep Learning Interrogation Scheme |
| title_fullStr | Experimental Dataset for Fiber Optic Specklegram Sensing Under Thermal Conditions and Use in a Deep Learning Interrogation Scheme |
| title_full_unstemmed | Experimental Dataset for Fiber Optic Specklegram Sensing Under Thermal Conditions and Use in a Deep Learning Interrogation Scheme |
| title_short | Experimental Dataset for Fiber Optic Specklegram Sensing Under Thermal Conditions and Use in a Deep Learning Interrogation Scheme |
| title_sort | experimental dataset for fiber optic specklegram sensing under thermal conditions and use in a deep learning interrogation scheme |
| topic | optical sensors specklegram fiber optic sensing deep learning temperature measurement |
| url | https://www.mdpi.com/2306-5729/10/4/44 |
| work_keys_str_mv | AT franciscojvelez experimentaldatasetforfiberopticspecklegramsensingunderthermalconditionsanduseinadeeplearninginterrogationscheme AT juandarango experimentaldatasetforfiberopticspecklegramsensingunderthermalconditionsanduseinadeeplearninginterrogationscheme AT victorharistizabal experimentaldatasetforfiberopticspecklegramsensingunderthermalconditionsanduseinadeeplearninginterrogationscheme AT carlostrujillo experimentaldatasetforfiberopticspecklegramsensingunderthermalconditionsanduseinadeeplearninginterrogationscheme AT jorgeaherreraramirez experimentaldatasetforfiberopticspecklegramsensingunderthermalconditionsanduseinadeeplearninginterrogationscheme |