Positive Periodic Solutions of Nonlinear First-Order Functional Difference Equations

We consider the existence, multiplicity, and nonexistence of positive T-periodic solutions for the difference equations Δx(n)=a(n)g(x(n))x(n)-λb(n)f(x(n-τ(n))), and Δx(n)+a(n)g(x(n))x(n)=λb(n)f(x(n-τ(n))), where a,b:ℤ→[0,∞) are T-periodic, τ:ℤ→ℤ is T-periodic.

Saved in:
Bibliographic Details
Main Authors: Ruyun Ma, Tianlan Chen, Yanqiong Lu
Format: Article
Language:English
Published: Wiley 2010-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2010/419536
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850178444603686912
author Ruyun Ma
Tianlan Chen
Yanqiong Lu
author_facet Ruyun Ma
Tianlan Chen
Yanqiong Lu
author_sort Ruyun Ma
collection DOAJ
description We consider the existence, multiplicity, and nonexistence of positive T-periodic solutions for the difference equations Δx(n)=a(n)g(x(n))x(n)-λb(n)f(x(n-τ(n))), and Δx(n)+a(n)g(x(n))x(n)=λb(n)f(x(n-τ(n))), where a,b:ℤ→[0,∞) are T-periodic, τ:ℤ→ℤ is T-periodic.
format Article
id doaj-art-bc44b709ef494d74aeda33c59fc05afe
institution OA Journals
issn 1026-0226
1607-887X
language English
publishDate 2010-01-01
publisher Wiley
record_format Article
series Discrete Dynamics in Nature and Society
spelling doaj-art-bc44b709ef494d74aeda33c59fc05afe2025-08-20T02:18:43ZengWileyDiscrete Dynamics in Nature and Society1026-02261607-887X2010-01-01201010.1155/2010/419536419536Positive Periodic Solutions of Nonlinear First-Order Functional Difference EquationsRuyun Ma0Tianlan Chen1Yanqiong Lu2Department of Mathematics, Northwest Normal University, Lanzhou 730070, ChinaDepartment of Mathematics, Northwest Normal University, Lanzhou 730070, ChinaDepartment of Mathematics, Northwest Normal University, Lanzhou 730070, ChinaWe consider the existence, multiplicity, and nonexistence of positive T-periodic solutions for the difference equations Δx(n)=a(n)g(x(n))x(n)-λb(n)f(x(n-τ(n))), and Δx(n)+a(n)g(x(n))x(n)=λb(n)f(x(n-τ(n))), where a,b:ℤ→[0,∞) are T-periodic, τ:ℤ→ℤ is T-periodic.http://dx.doi.org/10.1155/2010/419536
spellingShingle Ruyun Ma
Tianlan Chen
Yanqiong Lu
Positive Periodic Solutions of Nonlinear First-Order Functional Difference Equations
Discrete Dynamics in Nature and Society
title Positive Periodic Solutions of Nonlinear First-Order Functional Difference Equations
title_full Positive Periodic Solutions of Nonlinear First-Order Functional Difference Equations
title_fullStr Positive Periodic Solutions of Nonlinear First-Order Functional Difference Equations
title_full_unstemmed Positive Periodic Solutions of Nonlinear First-Order Functional Difference Equations
title_short Positive Periodic Solutions of Nonlinear First-Order Functional Difference Equations
title_sort positive periodic solutions of nonlinear first order functional difference equations
url http://dx.doi.org/10.1155/2010/419536
work_keys_str_mv AT ruyunma positiveperiodicsolutionsofnonlinearfirstorderfunctionaldifferenceequations
AT tianlanchen positiveperiodicsolutionsofnonlinearfirstorderfunctionaldifferenceequations
AT yanqionglu positiveperiodicsolutionsofnonlinearfirstorderfunctionaldifferenceequations