Positive Periodic Solutions of Nonlinear First-Order Functional Difference Equations
We consider the existence, multiplicity, and nonexistence of positive T-periodic solutions for the difference equations Δx(n)=a(n)g(x(n))x(n)-λb(n)f(x(n-τ(n))), and Δx(n)+a(n)g(x(n))x(n)=λb(n)f(x(n-τ(n))), where a,b:ℤ→[0,∞) are T-periodic, τ:ℤ→ℤ is T-periodic.
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2010-01-01
|
| Series: | Discrete Dynamics in Nature and Society |
| Online Access: | http://dx.doi.org/10.1155/2010/419536 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850178444603686912 |
|---|---|
| author | Ruyun Ma Tianlan Chen Yanqiong Lu |
| author_facet | Ruyun Ma Tianlan Chen Yanqiong Lu |
| author_sort | Ruyun Ma |
| collection | DOAJ |
| description | We consider the existence, multiplicity, and nonexistence of positive T-periodic solutions for the difference equations Δx(n)=a(n)g(x(n))x(n)-λb(n)f(x(n-τ(n))), and Δx(n)+a(n)g(x(n))x(n)=λb(n)f(x(n-τ(n))), where a,b:ℤ→[0,∞) are T-periodic, τ:ℤ→ℤ is T-periodic. |
| format | Article |
| id | doaj-art-bc44b709ef494d74aeda33c59fc05afe |
| institution | OA Journals |
| issn | 1026-0226 1607-887X |
| language | English |
| publishDate | 2010-01-01 |
| publisher | Wiley |
| record_format | Article |
| series | Discrete Dynamics in Nature and Society |
| spelling | doaj-art-bc44b709ef494d74aeda33c59fc05afe2025-08-20T02:18:43ZengWileyDiscrete Dynamics in Nature and Society1026-02261607-887X2010-01-01201010.1155/2010/419536419536Positive Periodic Solutions of Nonlinear First-Order Functional Difference EquationsRuyun Ma0Tianlan Chen1Yanqiong Lu2Department of Mathematics, Northwest Normal University, Lanzhou 730070, ChinaDepartment of Mathematics, Northwest Normal University, Lanzhou 730070, ChinaDepartment of Mathematics, Northwest Normal University, Lanzhou 730070, ChinaWe consider the existence, multiplicity, and nonexistence of positive T-periodic solutions for the difference equations Δx(n)=a(n)g(x(n))x(n)-λb(n)f(x(n-τ(n))), and Δx(n)+a(n)g(x(n))x(n)=λb(n)f(x(n-τ(n))), where a,b:ℤ→[0,∞) are T-periodic, τ:ℤ→ℤ is T-periodic.http://dx.doi.org/10.1155/2010/419536 |
| spellingShingle | Ruyun Ma Tianlan Chen Yanqiong Lu Positive Periodic Solutions of Nonlinear First-Order Functional Difference Equations Discrete Dynamics in Nature and Society |
| title | Positive Periodic Solutions of Nonlinear First-Order Functional Difference Equations |
| title_full | Positive Periodic Solutions of Nonlinear First-Order Functional Difference Equations |
| title_fullStr | Positive Periodic Solutions of Nonlinear First-Order Functional Difference Equations |
| title_full_unstemmed | Positive Periodic Solutions of Nonlinear First-Order Functional Difference Equations |
| title_short | Positive Periodic Solutions of Nonlinear First-Order Functional Difference Equations |
| title_sort | positive periodic solutions of nonlinear first order functional difference equations |
| url | http://dx.doi.org/10.1155/2010/419536 |
| work_keys_str_mv | AT ruyunma positiveperiodicsolutionsofnonlinearfirstorderfunctionaldifferenceequations AT tianlanchen positiveperiodicsolutionsofnonlinearfirstorderfunctionaldifferenceequations AT yanqionglu positiveperiodicsolutionsofnonlinearfirstorderfunctionaldifferenceequations |