Asymptotics on a heriditary recursion

The asymptotic behavior for a heriditary recursion</p><p class="disp_formula">$ \begin{equation*} x_1&gt;a \, \, \text{and} \, \, x_{n+1} = \frac{1}{n^s}\sum\limits_{k = 1}^nf\left(\frac{x_k}k\right)\text{ for every }n\geq1 \end{equation*} $</p><p>is studied, w...

Full description

Saved in:
Bibliographic Details
Main Authors: Yong-Guo Shi, Xiaoyu Luo, Zhi-jie Jiang
Format: Article
Language:English
Published: AIMS Press 2024-10-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.20241469?viewType=HTML
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850062763569709056
author Yong-Guo Shi
Xiaoyu Luo
Zhi-jie Jiang
author_facet Yong-Guo Shi
Xiaoyu Luo
Zhi-jie Jiang
author_sort Yong-Guo Shi
collection DOAJ
description The asymptotic behavior for a heriditary recursion</p><p class="disp_formula">$ \begin{equation*} x_1&gt;a \, \, \text{and} \, \, x_{n+1} = \frac{1}{n^s}\sum\limits_{k = 1}^nf\left(\frac{x_k}k\right)\text{ for every }n\geq1 \end{equation*} $</p><p>is studied, where $ f $ is decreasing, continuous on $ (a, \infty) $ ($ a &lt; 0 $), and twice differentiable at $ 0 $. The result has been known for the case $ s = 1 $. This paper analyzes the case $ s &gt; 1 $. We obtain an asymptotic sequence that is quite different from the case $ s = 1 $. Some examples and applications are provided.
format Article
id doaj-art-bc3e000c31e64ab2a1c12042da6de6be
institution DOAJ
issn 2473-6988
language English
publishDate 2024-10-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj-art-bc3e000c31e64ab2a1c12042da6de6be2025-08-20T02:49:49ZengAIMS PressAIMS Mathematics2473-69882024-10-01911304433045310.3934/math.20241469Asymptotics on a heriditary recursionYong-Guo Shi0Xiaoyu Luo1Zhi-jie Jiang21. Data Recovery Key Laboratory of Sichuan Province, College of Mathematics and Information Science, Neijiang Normal University, Neijiang 641100, China2. College of Mathematics and Statistics, Sichuan University of Science and Engineering, Zigong 64300, China2. College of Mathematics and Statistics, Sichuan University of Science and Engineering, Zigong 64300, ChinaThe asymptotic behavior for a heriditary recursion</p><p class="disp_formula">$ \begin{equation*} x_1&gt;a \, \, \text{and} \, \, x_{n+1} = \frac{1}{n^s}\sum\limits_{k = 1}^nf\left(\frac{x_k}k\right)\text{ for every }n\geq1 \end{equation*} $</p><p>is studied, where $ f $ is decreasing, continuous on $ (a, \infty) $ ($ a &lt; 0 $), and twice differentiable at $ 0 $. The result has been known for the case $ s = 1 $. This paper analyzes the case $ s &gt; 1 $. We obtain an asymptotic sequence that is quite different from the case $ s = 1 $. Some examples and applications are provided. https://www.aimspress.com/article/doi/10.3934/math.20241469?viewType=HTMLheriditary recursionasymptotic expansioneuler–maclaurin formula
spellingShingle Yong-Guo Shi
Xiaoyu Luo
Zhi-jie Jiang
Asymptotics on a heriditary recursion
AIMS Mathematics
heriditary recursion
asymptotic expansion
euler–maclaurin formula
title Asymptotics on a heriditary recursion
title_full Asymptotics on a heriditary recursion
title_fullStr Asymptotics on a heriditary recursion
title_full_unstemmed Asymptotics on a heriditary recursion
title_short Asymptotics on a heriditary recursion
title_sort asymptotics on a heriditary recursion
topic heriditary recursion
asymptotic expansion
euler–maclaurin formula
url https://www.aimspress.com/article/doi/10.3934/math.20241469?viewType=HTML
work_keys_str_mv AT yongguoshi asymptoticsonaheriditaryrecursion
AT xiaoyuluo asymptoticsonaheriditaryrecursion
AT zhijiejiang asymptoticsonaheriditaryrecursion