Multi-defect type beam bridge dataset: GYU-DET
Abstract This paper proposes the GYU-DET dataset for bridge surface defect detection, aiming to address the limitations of existing datasets in terms of scale, annotation accuracy, and environmental diversity. The GYU-DET dataset includes six types of defects: cracks, spalling, seepage, honeycomb su...
Saved in:
| Main Authors: | Ruiping Li, Linchang Zhao, Hao Wei, Guoqing Hu, Yongchi Xu, Bocheng Ouyang, Jin Tan |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-07-01
|
| Series: | Scientific Data |
| Online Access: | https://doi.org/10.1038/s41597-025-05395-w |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
«Det normale i det unormale»
by: Alexander Kofod-Jensen
Published: (2025-06-01) -
Det kommunikasjonsteoretiske perspektiv og dets innflytelse
by: Arve Hjelseth
Published: (2003-02-01) -
Det ville i oss og det dyriske
by: Solveig Bøe
Published: (2019-01-01) -
FabricSpotDefect: An annotated dataset for identifying spot defects in different fabric typesMendeley Data
by: Farzana Islam, et al.
Published: (2024-12-01) -
Kosmopolitisk svenskhet mellan det nationella och det globala
by: Catrin Lundström
Published: (2025-07-01)