Indoor positioning system for wireless sensor networks based on two-stage fuzzy inference
Wireless indoor positioning systems are susceptible to environmental distortion and attenuation of the signal, which can affect positioning accuracy. In this article, we present a two-stage indoor positioning scheme using a fuzzy-based algorithm aimed at minimizing uncertainty in received signal str...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2018-05-01
|
| Series: | International Journal of Distributed Sensor Networks |
| Online Access: | https://doi.org/10.1177/1550147718780649 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849765217293041664 |
|---|---|
| author | Chia-Hsin Cheng Yi Yan |
| author_facet | Chia-Hsin Cheng Yi Yan |
| author_sort | Chia-Hsin Cheng |
| collection | DOAJ |
| description | Wireless indoor positioning systems are susceptible to environmental distortion and attenuation of the signal, which can affect positioning accuracy. In this article, we present a two-stage indoor positioning scheme using a fuzzy-based algorithm aimed at minimizing uncertainty in received signal strength indicator measures from reference nodes in wireless sensor networks. In the first stage, the indoor space is divided into several zones and a fuzzy-based indoor zone-positioning scheme is used to identify the zone in which the target node is located via zone splitting. In the second stage, adaptive trilateration is used to position the target node within the zone identified in the first stage. Simulation results demonstrate that the proposed two-stage fuzzy rectangular splitting outperforms non-fuzzy-based algorithms, including K-Nearest Neighbors–based localization, and traditional triangular splitting schemes. We also developed an expanded positioning scheme to facilitate the selection of a positioning map for large indoor spaces, thereby overcoming the limitations imposed by the size of the positioning area while maintaining high positioning resolution. |
| format | Article |
| id | doaj-art-bc2b4067cb6d4206b6d8b2b0095789b4 |
| institution | DOAJ |
| issn | 1550-1477 |
| language | English |
| publishDate | 2018-05-01 |
| publisher | Wiley |
| record_format | Article |
| series | International Journal of Distributed Sensor Networks |
| spelling | doaj-art-bc2b4067cb6d4206b6d8b2b0095789b42025-08-20T03:04:55ZengWileyInternational Journal of Distributed Sensor Networks1550-14772018-05-011410.1177/1550147718780649Indoor positioning system for wireless sensor networks based on two-stage fuzzy inferenceChia-Hsin ChengYi YanWireless indoor positioning systems are susceptible to environmental distortion and attenuation of the signal, which can affect positioning accuracy. In this article, we present a two-stage indoor positioning scheme using a fuzzy-based algorithm aimed at minimizing uncertainty in received signal strength indicator measures from reference nodes in wireless sensor networks. In the first stage, the indoor space is divided into several zones and a fuzzy-based indoor zone-positioning scheme is used to identify the zone in which the target node is located via zone splitting. In the second stage, adaptive trilateration is used to position the target node within the zone identified in the first stage. Simulation results demonstrate that the proposed two-stage fuzzy rectangular splitting outperforms non-fuzzy-based algorithms, including K-Nearest Neighbors–based localization, and traditional triangular splitting schemes. We also developed an expanded positioning scheme to facilitate the selection of a positioning map for large indoor spaces, thereby overcoming the limitations imposed by the size of the positioning area while maintaining high positioning resolution.https://doi.org/10.1177/1550147718780649 |
| spellingShingle | Chia-Hsin Cheng Yi Yan Indoor positioning system for wireless sensor networks based on two-stage fuzzy inference International Journal of Distributed Sensor Networks |
| title | Indoor positioning system for wireless sensor networks based on two-stage fuzzy inference |
| title_full | Indoor positioning system for wireless sensor networks based on two-stage fuzzy inference |
| title_fullStr | Indoor positioning system for wireless sensor networks based on two-stage fuzzy inference |
| title_full_unstemmed | Indoor positioning system for wireless sensor networks based on two-stage fuzzy inference |
| title_short | Indoor positioning system for wireless sensor networks based on two-stage fuzzy inference |
| title_sort | indoor positioning system for wireless sensor networks based on two stage fuzzy inference |
| url | https://doi.org/10.1177/1550147718780649 |
| work_keys_str_mv | AT chiahsincheng indoorpositioningsystemforwirelesssensornetworksbasedontwostagefuzzyinference AT yiyan indoorpositioningsystemforwirelesssensornetworksbasedontwostagefuzzyinference |