Magnetic phase diagram of Mn3+xSn1−x epitaxial thin films: Extending the anomalous Hall effect to low temperatures via intrinsic alloying

Antiferromagnets with broken time-reversal symmetry, such as Mn3Sn, have emerged as promising platforms for exploring topological and correlated electron physics. Mn3Sn is known to show two magnetic phase transitions: a non-collinear inverse triangular antiferromagnetic (IT-AFM) spin configuration i...

Full description

Saved in:
Bibliographic Details
Main Authors: K. Gas, J.-Y. Yoon, Y. Sato, H. Kubota, P. Dłużewski, S. Kret, J. Z. Domagala, Y. K. Edathumkandy, Y. Takeuchi, S. Kanai, H. Ohno, M. Sawicki, S. Fukami
Format: Article
Language:English
Published: AIP Publishing LLC 2025-04-01
Series:APL Materials
Online Access:http://dx.doi.org/10.1063/5.0254918
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849324392071299072
author K. Gas
J.-Y. Yoon
Y. Sato
H. Kubota
P. Dłużewski
S. Kret
J. Z. Domagala
Y. K. Edathumkandy
Y. Takeuchi
S. Kanai
H. Ohno
M. Sawicki
S. Fukami
author_facet K. Gas
J.-Y. Yoon
Y. Sato
H. Kubota
P. Dłużewski
S. Kret
J. Z. Domagala
Y. K. Edathumkandy
Y. Takeuchi
S. Kanai
H. Ohno
M. Sawicki
S. Fukami
author_sort K. Gas
collection DOAJ
description Antiferromagnets with broken time-reversal symmetry, such as Mn3Sn, have emerged as promising platforms for exploring topological and correlated electron physics. Mn3Sn is known to show two magnetic phase transitions: a non-collinear inverse triangular antiferromagnetic (IT-AFM) spin configuration is formed below its Néel temperature (TN ≅ 420 K), whereas at T1 that usually locates below room temperature, it transits to an incommensurate spin state. Accordingly, intriguing properties such as a strong anomalous Hall effect, observed from TN to T1, disappear below T1, limiting its utility at low temperatures. While bulk Mn3Sn has been extensively studied, the magnetic phase transitions and their tunability in thin films remain largely unexplored. Here, we investigate the magnetic and magneto-transport properties of Mn3+xSn1−x epitaxial thin films prepared by magnetron sputtering, systematically varying the Mn–Sn composition. Our results reveal that intrinsic alloying with Mn provides us with a handle to tune T1, with the IT-AFM phase stabilized down to liquid helium temperatures for x > 0.15. From a magnetic phase diagram for epitaxial thin films, we also find a consistent magnetic anomaly ∼55 K below TN, accompanied by thermal hysteresis. Furthermore, the reduction in TN in thin films relative to bulk values is shown to correlate with lattice parameter changes. These findings extend the accessible temperature range for Mn3Sn’s topological properties, paving the way for novel applications and further investigations into the interplay of spin, lattice, and electronic degrees of freedom in thin-film geometries.
format Article
id doaj-art-bc28b5a90b6f42faba188ea827cf51cf
institution Kabale University
issn 2166-532X
language English
publishDate 2025-04-01
publisher AIP Publishing LLC
record_format Article
series APL Materials
spelling doaj-art-bc28b5a90b6f42faba188ea827cf51cf2025-08-20T03:48:42ZengAIP Publishing LLCAPL Materials2166-532X2025-04-01134041105041105-810.1063/5.0254918Magnetic phase diagram of Mn3+xSn1−x epitaxial thin films: Extending the anomalous Hall effect to low temperatures via intrinsic alloyingK. Gas0J.-Y. Yoon1Y. Sato2H. Kubota3P. Dłużewski4S. Kret5J. Z. Domagala6Y. K. Edathumkandy7Y. Takeuchi8S. Kanai9H. Ohno10M. Sawicki11S. Fukami12Center for Science and Innovation in Spintronics, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, JapanLaboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, JapanLaboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, JapanLaboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, JapanInstitute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, PolandInstitute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, PolandInstitute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, PolandInstitute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, PolandLaboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, JapanCenter for Science and Innovation in Spintronics, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, JapanCenter for Science and Innovation in Spintronics, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, JapanInstitute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, PolandCenter for Science and Innovation in Spintronics, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, JapanAntiferromagnets with broken time-reversal symmetry, such as Mn3Sn, have emerged as promising platforms for exploring topological and correlated electron physics. Mn3Sn is known to show two magnetic phase transitions: a non-collinear inverse triangular antiferromagnetic (IT-AFM) spin configuration is formed below its Néel temperature (TN ≅ 420 K), whereas at T1 that usually locates below room temperature, it transits to an incommensurate spin state. Accordingly, intriguing properties such as a strong anomalous Hall effect, observed from TN to T1, disappear below T1, limiting its utility at low temperatures. While bulk Mn3Sn has been extensively studied, the magnetic phase transitions and their tunability in thin films remain largely unexplored. Here, we investigate the magnetic and magneto-transport properties of Mn3+xSn1−x epitaxial thin films prepared by magnetron sputtering, systematically varying the Mn–Sn composition. Our results reveal that intrinsic alloying with Mn provides us with a handle to tune T1, with the IT-AFM phase stabilized down to liquid helium temperatures for x > 0.15. From a magnetic phase diagram for epitaxial thin films, we also find a consistent magnetic anomaly ∼55 K below TN, accompanied by thermal hysteresis. Furthermore, the reduction in TN in thin films relative to bulk values is shown to correlate with lattice parameter changes. These findings extend the accessible temperature range for Mn3Sn’s topological properties, paving the way for novel applications and further investigations into the interplay of spin, lattice, and electronic degrees of freedom in thin-film geometries.http://dx.doi.org/10.1063/5.0254918
spellingShingle K. Gas
J.-Y. Yoon
Y. Sato
H. Kubota
P. Dłużewski
S. Kret
J. Z. Domagala
Y. K. Edathumkandy
Y. Takeuchi
S. Kanai
H. Ohno
M. Sawicki
S. Fukami
Magnetic phase diagram of Mn3+xSn1−x epitaxial thin films: Extending the anomalous Hall effect to low temperatures via intrinsic alloying
APL Materials
title Magnetic phase diagram of Mn3+xSn1−x epitaxial thin films: Extending the anomalous Hall effect to low temperatures via intrinsic alloying
title_full Magnetic phase diagram of Mn3+xSn1−x epitaxial thin films: Extending the anomalous Hall effect to low temperatures via intrinsic alloying
title_fullStr Magnetic phase diagram of Mn3+xSn1−x epitaxial thin films: Extending the anomalous Hall effect to low temperatures via intrinsic alloying
title_full_unstemmed Magnetic phase diagram of Mn3+xSn1−x epitaxial thin films: Extending the anomalous Hall effect to low temperatures via intrinsic alloying
title_short Magnetic phase diagram of Mn3+xSn1−x epitaxial thin films: Extending the anomalous Hall effect to low temperatures via intrinsic alloying
title_sort magnetic phase diagram of mn3 xsn1 x epitaxial thin films extending the anomalous hall effect to low temperatures via intrinsic alloying
url http://dx.doi.org/10.1063/5.0254918
work_keys_str_mv AT kgas magneticphasediagramofmn3xsn1xepitaxialthinfilmsextendingtheanomaloushalleffecttolowtemperaturesviaintrinsicalloying
AT jyyoon magneticphasediagramofmn3xsn1xepitaxialthinfilmsextendingtheanomaloushalleffecttolowtemperaturesviaintrinsicalloying
AT ysato magneticphasediagramofmn3xsn1xepitaxialthinfilmsextendingtheanomaloushalleffecttolowtemperaturesviaintrinsicalloying
AT hkubota magneticphasediagramofmn3xsn1xepitaxialthinfilmsextendingtheanomaloushalleffecttolowtemperaturesviaintrinsicalloying
AT pdłuzewski magneticphasediagramofmn3xsn1xepitaxialthinfilmsextendingtheanomaloushalleffecttolowtemperaturesviaintrinsicalloying
AT skret magneticphasediagramofmn3xsn1xepitaxialthinfilmsextendingtheanomaloushalleffecttolowtemperaturesviaintrinsicalloying
AT jzdomagala magneticphasediagramofmn3xsn1xepitaxialthinfilmsextendingtheanomaloushalleffecttolowtemperaturesviaintrinsicalloying
AT ykedathumkandy magneticphasediagramofmn3xsn1xepitaxialthinfilmsextendingtheanomaloushalleffecttolowtemperaturesviaintrinsicalloying
AT ytakeuchi magneticphasediagramofmn3xsn1xepitaxialthinfilmsextendingtheanomaloushalleffecttolowtemperaturesviaintrinsicalloying
AT skanai magneticphasediagramofmn3xsn1xepitaxialthinfilmsextendingtheanomaloushalleffecttolowtemperaturesviaintrinsicalloying
AT hohno magneticphasediagramofmn3xsn1xepitaxialthinfilmsextendingtheanomaloushalleffecttolowtemperaturesviaintrinsicalloying
AT msawicki magneticphasediagramofmn3xsn1xepitaxialthinfilmsextendingtheanomaloushalleffecttolowtemperaturesviaintrinsicalloying
AT sfukami magneticphasediagramofmn3xsn1xepitaxialthinfilmsextendingtheanomaloushalleffecttolowtemperaturesviaintrinsicalloying