Magnetic phase diagram of Mn3+xSn1−x epitaxial thin films: Extending the anomalous Hall effect to low temperatures via intrinsic alloying
Antiferromagnets with broken time-reversal symmetry, such as Mn3Sn, have emerged as promising platforms for exploring topological and correlated electron physics. Mn3Sn is known to show two magnetic phase transitions: a non-collinear inverse triangular antiferromagnetic (IT-AFM) spin configuration i...
Saved in:
| Main Authors: | , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
AIP Publishing LLC
2025-04-01
|
| Series: | APL Materials |
| Online Access: | http://dx.doi.org/10.1063/5.0254918 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849324392071299072 |
|---|---|
| author | K. Gas J.-Y. Yoon Y. Sato H. Kubota P. Dłużewski S. Kret J. Z. Domagala Y. K. Edathumkandy Y. Takeuchi S. Kanai H. Ohno M. Sawicki S. Fukami |
| author_facet | K. Gas J.-Y. Yoon Y. Sato H. Kubota P. Dłużewski S. Kret J. Z. Domagala Y. K. Edathumkandy Y. Takeuchi S. Kanai H. Ohno M. Sawicki S. Fukami |
| author_sort | K. Gas |
| collection | DOAJ |
| description | Antiferromagnets with broken time-reversal symmetry, such as Mn3Sn, have emerged as promising platforms for exploring topological and correlated electron physics. Mn3Sn is known to show two magnetic phase transitions: a non-collinear inverse triangular antiferromagnetic (IT-AFM) spin configuration is formed below its Néel temperature (TN ≅ 420 K), whereas at T1 that usually locates below room temperature, it transits to an incommensurate spin state. Accordingly, intriguing properties such as a strong anomalous Hall effect, observed from TN to T1, disappear below T1, limiting its utility at low temperatures. While bulk Mn3Sn has been extensively studied, the magnetic phase transitions and their tunability in thin films remain largely unexplored. Here, we investigate the magnetic and magneto-transport properties of Mn3+xSn1−x epitaxial thin films prepared by magnetron sputtering, systematically varying the Mn–Sn composition. Our results reveal that intrinsic alloying with Mn provides us with a handle to tune T1, with the IT-AFM phase stabilized down to liquid helium temperatures for x > 0.15. From a magnetic phase diagram for epitaxial thin films, we also find a consistent magnetic anomaly ∼55 K below TN, accompanied by thermal hysteresis. Furthermore, the reduction in TN in thin films relative to bulk values is shown to correlate with lattice parameter changes. These findings extend the accessible temperature range for Mn3Sn’s topological properties, paving the way for novel applications and further investigations into the interplay of spin, lattice, and electronic degrees of freedom in thin-film geometries. |
| format | Article |
| id | doaj-art-bc28b5a90b6f42faba188ea827cf51cf |
| institution | Kabale University |
| issn | 2166-532X |
| language | English |
| publishDate | 2025-04-01 |
| publisher | AIP Publishing LLC |
| record_format | Article |
| series | APL Materials |
| spelling | doaj-art-bc28b5a90b6f42faba188ea827cf51cf2025-08-20T03:48:42ZengAIP Publishing LLCAPL Materials2166-532X2025-04-01134041105041105-810.1063/5.0254918Magnetic phase diagram of Mn3+xSn1−x epitaxial thin films: Extending the anomalous Hall effect to low temperatures via intrinsic alloyingK. Gas0J.-Y. Yoon1Y. Sato2H. Kubota3P. Dłużewski4S. Kret5J. Z. Domagala6Y. K. Edathumkandy7Y. Takeuchi8S. Kanai9H. Ohno10M. Sawicki11S. Fukami12Center for Science and Innovation in Spintronics, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, JapanLaboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, JapanLaboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, JapanLaboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, JapanInstitute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, PolandInstitute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, PolandInstitute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, PolandInstitute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, PolandLaboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, JapanCenter for Science and Innovation in Spintronics, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, JapanCenter for Science and Innovation in Spintronics, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, JapanInstitute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, PolandCenter for Science and Innovation in Spintronics, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, JapanAntiferromagnets with broken time-reversal symmetry, such as Mn3Sn, have emerged as promising platforms for exploring topological and correlated electron physics. Mn3Sn is known to show two magnetic phase transitions: a non-collinear inverse triangular antiferromagnetic (IT-AFM) spin configuration is formed below its Néel temperature (TN ≅ 420 K), whereas at T1 that usually locates below room temperature, it transits to an incommensurate spin state. Accordingly, intriguing properties such as a strong anomalous Hall effect, observed from TN to T1, disappear below T1, limiting its utility at low temperatures. While bulk Mn3Sn has been extensively studied, the magnetic phase transitions and their tunability in thin films remain largely unexplored. Here, we investigate the magnetic and magneto-transport properties of Mn3+xSn1−x epitaxial thin films prepared by magnetron sputtering, systematically varying the Mn–Sn composition. Our results reveal that intrinsic alloying with Mn provides us with a handle to tune T1, with the IT-AFM phase stabilized down to liquid helium temperatures for x > 0.15. From a magnetic phase diagram for epitaxial thin films, we also find a consistent magnetic anomaly ∼55 K below TN, accompanied by thermal hysteresis. Furthermore, the reduction in TN in thin films relative to bulk values is shown to correlate with lattice parameter changes. These findings extend the accessible temperature range for Mn3Sn’s topological properties, paving the way for novel applications and further investigations into the interplay of spin, lattice, and electronic degrees of freedom in thin-film geometries.http://dx.doi.org/10.1063/5.0254918 |
| spellingShingle | K. Gas J.-Y. Yoon Y. Sato H. Kubota P. Dłużewski S. Kret J. Z. Domagala Y. K. Edathumkandy Y. Takeuchi S. Kanai H. Ohno M. Sawicki S. Fukami Magnetic phase diagram of Mn3+xSn1−x epitaxial thin films: Extending the anomalous Hall effect to low temperatures via intrinsic alloying APL Materials |
| title | Magnetic phase diagram of Mn3+xSn1−x epitaxial thin films: Extending the anomalous Hall effect to low temperatures via intrinsic alloying |
| title_full | Magnetic phase diagram of Mn3+xSn1−x epitaxial thin films: Extending the anomalous Hall effect to low temperatures via intrinsic alloying |
| title_fullStr | Magnetic phase diagram of Mn3+xSn1−x epitaxial thin films: Extending the anomalous Hall effect to low temperatures via intrinsic alloying |
| title_full_unstemmed | Magnetic phase diagram of Mn3+xSn1−x epitaxial thin films: Extending the anomalous Hall effect to low temperatures via intrinsic alloying |
| title_short | Magnetic phase diagram of Mn3+xSn1−x epitaxial thin films: Extending the anomalous Hall effect to low temperatures via intrinsic alloying |
| title_sort | magnetic phase diagram of mn3 xsn1 x epitaxial thin films extending the anomalous hall effect to low temperatures via intrinsic alloying |
| url | http://dx.doi.org/10.1063/5.0254918 |
| work_keys_str_mv | AT kgas magneticphasediagramofmn3xsn1xepitaxialthinfilmsextendingtheanomaloushalleffecttolowtemperaturesviaintrinsicalloying AT jyyoon magneticphasediagramofmn3xsn1xepitaxialthinfilmsextendingtheanomaloushalleffecttolowtemperaturesviaintrinsicalloying AT ysato magneticphasediagramofmn3xsn1xepitaxialthinfilmsextendingtheanomaloushalleffecttolowtemperaturesviaintrinsicalloying AT hkubota magneticphasediagramofmn3xsn1xepitaxialthinfilmsextendingtheanomaloushalleffecttolowtemperaturesviaintrinsicalloying AT pdłuzewski magneticphasediagramofmn3xsn1xepitaxialthinfilmsextendingtheanomaloushalleffecttolowtemperaturesviaintrinsicalloying AT skret magneticphasediagramofmn3xsn1xepitaxialthinfilmsextendingtheanomaloushalleffecttolowtemperaturesviaintrinsicalloying AT jzdomagala magneticphasediagramofmn3xsn1xepitaxialthinfilmsextendingtheanomaloushalleffecttolowtemperaturesviaintrinsicalloying AT ykedathumkandy magneticphasediagramofmn3xsn1xepitaxialthinfilmsextendingtheanomaloushalleffecttolowtemperaturesviaintrinsicalloying AT ytakeuchi magneticphasediagramofmn3xsn1xepitaxialthinfilmsextendingtheanomaloushalleffecttolowtemperaturesviaintrinsicalloying AT skanai magneticphasediagramofmn3xsn1xepitaxialthinfilmsextendingtheanomaloushalleffecttolowtemperaturesviaintrinsicalloying AT hohno magneticphasediagramofmn3xsn1xepitaxialthinfilmsextendingtheanomaloushalleffecttolowtemperaturesviaintrinsicalloying AT msawicki magneticphasediagramofmn3xsn1xepitaxialthinfilmsextendingtheanomaloushalleffecttolowtemperaturesviaintrinsicalloying AT sfukami magneticphasediagramofmn3xsn1xepitaxialthinfilmsextendingtheanomaloushalleffecttolowtemperaturesviaintrinsicalloying |