Automated web-based typing of Clostridioides difficile ribotypes via MALDI-TOF MS

Abstract Background Clostridioides difficile is a major cause of hospital-acquired diarrhea and a driver of nosocomial outbreaks, yet rapid, accurate ribotype identification remains challenging. We sought to develop a MALDI-TOF MS–based workflow coupled with machine learning to distinguish epidemic...

Full description

Saved in:
Bibliographic Details
Main Authors: Mario Blázquez-Sánchez, Alejandro Guerrero-López, Ana Candela, Albert Belenguer-Llorens, José Miguel Moreno, Carlos Sevilla-Salcedo, María Sánchez-Cueto, Manuel J. Arroyo, Mark Gutiérrez-Pareja, Vanessa Gómez-Verdejo, Pablo M. Olmos, Luis Mancera, Patricia Muñoz, Mercedes Marín, Luis Alcalá, David Rodríguez-Temporal, Belén Rodríguez-Sánchez
Format: Article
Language:English
Published: BMC 2025-07-01
Series:BMC Bioinformatics
Subjects:
Online Access:https://doi.org/10.1186/s12859-025-06200-6
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849341929544744960
author Mario Blázquez-Sánchez
Alejandro Guerrero-López
Ana Candela
Albert Belenguer-Llorens
José Miguel Moreno
Carlos Sevilla-Salcedo
María Sánchez-Cueto
Manuel J. Arroyo
Mark Gutiérrez-Pareja
Vanessa Gómez-Verdejo
Pablo M. Olmos
Luis Mancera
Patricia Muñoz
Mercedes Marín
Luis Alcalá
David Rodríguez-Temporal
Belén Rodríguez-Sánchez
author_facet Mario Blázquez-Sánchez
Alejandro Guerrero-López
Ana Candela
Albert Belenguer-Llorens
José Miguel Moreno
Carlos Sevilla-Salcedo
María Sánchez-Cueto
Manuel J. Arroyo
Mark Gutiérrez-Pareja
Vanessa Gómez-Verdejo
Pablo M. Olmos
Luis Mancera
Patricia Muñoz
Mercedes Marín
Luis Alcalá
David Rodríguez-Temporal
Belén Rodríguez-Sánchez
author_sort Mario Blázquez-Sánchez
collection DOAJ
description Abstract Background Clostridioides difficile is a major cause of hospital-acquired diarrhea and a driver of nosocomial outbreaks, yet rapid, accurate ribotype identification remains challenging. We sought to develop a MALDI-TOF MS–based workflow coupled with machine learning to distinguish epidemic toxigenic ribotypes (RT027 and RT181) from other strains in real time. Results We analyzed MALDI-TOF spectra from 379 clinical isolates collected across ten Spanish hospitals and identified seven discriminant biomarker peaks. Two peaks (2463 and 4993 m/z) were uniquely associated with RT027, while combinations of five additional peaks reliably identified RT181. Our classifiers–implemented both in the commercial Clover MSDAS platform and the open-access AutoCdiff web tool–achieved up to 100% balanced accuracy in ribotype assignment and proved robust in real-time outbreak simulations. Conclusions This study demonstrates that MALDI-TOF MS combined with tailored machine learning can deliver rapid, high-precision ribotype identification for C. difficile. The freely available AutoCdiff models ( https://bacteria.id ) offer an immediately deployable solution for clinical laboratories, with the potential to enhance outbreak surveillance and control.
format Article
id doaj-art-bbcfa345e223418cbfa944691d0b8c6d
institution Kabale University
issn 1471-2105
language English
publishDate 2025-07-01
publisher BMC
record_format Article
series BMC Bioinformatics
spelling doaj-art-bbcfa345e223418cbfa944691d0b8c6d2025-08-20T03:43:31ZengBMCBMC Bioinformatics1471-21052025-07-0126111510.1186/s12859-025-06200-6Automated web-based typing of Clostridioides difficile ribotypes via MALDI-TOF MSMario Blázquez-Sánchez0Alejandro Guerrero-López1Ana Candela2Albert Belenguer-Llorens3José Miguel Moreno4Carlos Sevilla-Salcedo5María Sánchez-Cueto6Manuel J. Arroyo7Mark Gutiérrez-Pareja8Vanessa Gómez-Verdejo9Pablo M. Olmos10Luis Mancera11Patricia Muñoz12Mercedes Marín13Luis Alcalá14David Rodríguez-Temporal15Belén Rodríguez-Sánchez16Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio MarañónSignal Processing and Communications Department, Universidad Carlos III de MadridClinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio MarañónSignal Processing and Communications Department, Universidad Carlos III de MadridComputer Science and Engineering Department, Universidad Carlos III de MadridSignal Processing and Communications Department, Universidad Carlos III de MadridClinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio MarañónClover Bioanalytical SoftwareClinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio MarañónSignal Processing and Communications Department, Universidad Carlos III de MadridSignal Processing and Communications Department, Universidad Carlos III de MadridClover Bioanalytical SoftwareClinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio MarañónClinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio MarañónClinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio MarañónClinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio MarañónClinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio MarañónAbstract Background Clostridioides difficile is a major cause of hospital-acquired diarrhea and a driver of nosocomial outbreaks, yet rapid, accurate ribotype identification remains challenging. We sought to develop a MALDI-TOF MS–based workflow coupled with machine learning to distinguish epidemic toxigenic ribotypes (RT027 and RT181) from other strains in real time. Results We analyzed MALDI-TOF spectra from 379 clinical isolates collected across ten Spanish hospitals and identified seven discriminant biomarker peaks. Two peaks (2463 and 4993 m/z) were uniquely associated with RT027, while combinations of five additional peaks reliably identified RT181. Our classifiers–implemented both in the commercial Clover MSDAS platform and the open-access AutoCdiff web tool–achieved up to 100% balanced accuracy in ribotype assignment and proved robust in real-time outbreak simulations. Conclusions This study demonstrates that MALDI-TOF MS combined with tailored machine learning can deliver rapid, high-precision ribotype identification for C. difficile. The freely available AutoCdiff models ( https://bacteria.id ) offer an immediately deployable solution for clinical laboratories, with the potential to enhance outbreak surveillance and control.https://doi.org/10.1186/s12859-025-06200-6Clostridioides difficileClostridium difficileMALDI-TOF MSMachine learningRibotypingOutbreak
spellingShingle Mario Blázquez-Sánchez
Alejandro Guerrero-López
Ana Candela
Albert Belenguer-Llorens
José Miguel Moreno
Carlos Sevilla-Salcedo
María Sánchez-Cueto
Manuel J. Arroyo
Mark Gutiérrez-Pareja
Vanessa Gómez-Verdejo
Pablo M. Olmos
Luis Mancera
Patricia Muñoz
Mercedes Marín
Luis Alcalá
David Rodríguez-Temporal
Belén Rodríguez-Sánchez
Automated web-based typing of Clostridioides difficile ribotypes via MALDI-TOF MS
BMC Bioinformatics
Clostridioides difficile
Clostridium difficile
MALDI-TOF MS
Machine learning
Ribotyping
Outbreak
title Automated web-based typing of Clostridioides difficile ribotypes via MALDI-TOF MS
title_full Automated web-based typing of Clostridioides difficile ribotypes via MALDI-TOF MS
title_fullStr Automated web-based typing of Clostridioides difficile ribotypes via MALDI-TOF MS
title_full_unstemmed Automated web-based typing of Clostridioides difficile ribotypes via MALDI-TOF MS
title_short Automated web-based typing of Clostridioides difficile ribotypes via MALDI-TOF MS
title_sort automated web based typing of clostridioides difficile ribotypes via maldi tof ms
topic Clostridioides difficile
Clostridium difficile
MALDI-TOF MS
Machine learning
Ribotyping
Outbreak
url https://doi.org/10.1186/s12859-025-06200-6
work_keys_str_mv AT marioblazquezsanchez automatedwebbasedtypingofclostridioidesdifficileribotypesviamalditofms
AT alejandroguerrerolopez automatedwebbasedtypingofclostridioidesdifficileribotypesviamalditofms
AT anacandela automatedwebbasedtypingofclostridioidesdifficileribotypesviamalditofms
AT albertbelenguerllorens automatedwebbasedtypingofclostridioidesdifficileribotypesviamalditofms
AT josemiguelmoreno automatedwebbasedtypingofclostridioidesdifficileribotypesviamalditofms
AT carlossevillasalcedo automatedwebbasedtypingofclostridioidesdifficileribotypesviamalditofms
AT mariasanchezcueto automatedwebbasedtypingofclostridioidesdifficileribotypesviamalditofms
AT manueljarroyo automatedwebbasedtypingofclostridioidesdifficileribotypesviamalditofms
AT markgutierrezpareja automatedwebbasedtypingofclostridioidesdifficileribotypesviamalditofms
AT vanessagomezverdejo automatedwebbasedtypingofclostridioidesdifficileribotypesviamalditofms
AT pablomolmos automatedwebbasedtypingofclostridioidesdifficileribotypesviamalditofms
AT luismancera automatedwebbasedtypingofclostridioidesdifficileribotypesviamalditofms
AT patriciamunoz automatedwebbasedtypingofclostridioidesdifficileribotypesviamalditofms
AT mercedesmarin automatedwebbasedtypingofclostridioidesdifficileribotypesviamalditofms
AT luisalcala automatedwebbasedtypingofclostridioidesdifficileribotypesviamalditofms
AT davidrodrigueztemporal automatedwebbasedtypingofclostridioidesdifficileribotypesviamalditofms
AT belenrodriguezsanchez automatedwebbasedtypingofclostridioidesdifficileribotypesviamalditofms