Application of the Slope Coefficient of the Equivalent M–C Criterion in Layered Rock Mass Engineering
The slope coefficient ω is defined based on the insufficiency of the area equivalent method, the slope of the equivalent M–C criterion obtained from the instantaneous equivalent, and the optimal first-order approximation to reduce the error between the simulated value and the measured value of the s...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2022-01-01
|
Series: | Advances in Civil Engineering |
Online Access: | http://dx.doi.org/10.1155/2022/2913942 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832554730298015744 |
---|---|
author | Qian Liu Qizhi Hu Fan Zhang Zhigang Ding Wencheng Bao |
author_facet | Qian Liu Qizhi Hu Fan Zhang Zhigang Ding Wencheng Bao |
author_sort | Qian Liu |
collection | DOAJ |
description | The slope coefficient ω is defined based on the insufficiency of the area equivalent method, the slope of the equivalent M–C criterion obtained from the instantaneous equivalent, and the optimal first-order approximation to reduce the error between the simulated value and the measured value of the surrounding rock and ensure the safety of the project. Different ω conditions are set to obtain multiple equivalent M–C strength parameter combinations. The above combinations are input to the ubiquitous joint model of FLAC3D, and the surrounding rock strength of layered tunnels with different inclination angles (0°, 30°, 45°, 60°, and 90°) is corrected. The results show that (1) after the tunnel excavation is completed, the displacement of key points (e.g., the vault and waist) increases when the slope coefficient is increased and the deviator stress decreases when the slope coefficient is increased. (2) After the area equivalent method is revised, the displacement and the deviator stress are more significantly affected by the inclination of the rock strata than the uncorrected ones, suggesting that the equivalent area can more effectively highlight the anisotropy characteristics of the layered surrounding rock. (3) After the simulation results of the displacement and the deviator stress at the respective key point are comprehensively modified, the optimal slope coefficient corresponding to each rock layer inclination is obtained, and the area is optimized by ensuring reasonableness to reduce the error between the simulated value and the measured value. (4) The layered surrounding rock at a dip angle of 30° is studied. The development of the plastic zone is promoted when the slope coefficient is increased, and the rock shear failure and the joint shear failure occur simultaneously on both sides of its axis. |
format | Article |
id | doaj-art-bb991d79c58040f093545b2280acb069 |
institution | Kabale University |
issn | 1687-8094 |
language | English |
publishDate | 2022-01-01 |
publisher | Wiley |
record_format | Article |
series | Advances in Civil Engineering |
spelling | doaj-art-bb991d79c58040f093545b2280acb0692025-02-03T05:50:40ZengWileyAdvances in Civil Engineering1687-80942022-01-01202210.1155/2022/2913942Application of the Slope Coefficient of the Equivalent M–C Criterion in Layered Rock Mass EngineeringQian Liu0Qizhi Hu1Fan Zhang2Zhigang Ding3Wencheng Bao4College of Civil Construction and Environment CollegeCollege of Civil Construction and Environment CollegeCollege of Civil Construction and Environment CollegeChina Communication Road & Bridge South Engineering Co., Ltd.China Communication Road & Bridge South Engineering Co., Ltd.The slope coefficient ω is defined based on the insufficiency of the area equivalent method, the slope of the equivalent M–C criterion obtained from the instantaneous equivalent, and the optimal first-order approximation to reduce the error between the simulated value and the measured value of the surrounding rock and ensure the safety of the project. Different ω conditions are set to obtain multiple equivalent M–C strength parameter combinations. The above combinations are input to the ubiquitous joint model of FLAC3D, and the surrounding rock strength of layered tunnels with different inclination angles (0°, 30°, 45°, 60°, and 90°) is corrected. The results show that (1) after the tunnel excavation is completed, the displacement of key points (e.g., the vault and waist) increases when the slope coefficient is increased and the deviator stress decreases when the slope coefficient is increased. (2) After the area equivalent method is revised, the displacement and the deviator stress are more significantly affected by the inclination of the rock strata than the uncorrected ones, suggesting that the equivalent area can more effectively highlight the anisotropy characteristics of the layered surrounding rock. (3) After the simulation results of the displacement and the deviator stress at the respective key point are comprehensively modified, the optimal slope coefficient corresponding to each rock layer inclination is obtained, and the area is optimized by ensuring reasonableness to reduce the error between the simulated value and the measured value. (4) The layered surrounding rock at a dip angle of 30° is studied. The development of the plastic zone is promoted when the slope coefficient is increased, and the rock shear failure and the joint shear failure occur simultaneously on both sides of its axis.http://dx.doi.org/10.1155/2022/2913942 |
spellingShingle | Qian Liu Qizhi Hu Fan Zhang Zhigang Ding Wencheng Bao Application of the Slope Coefficient of the Equivalent M–C Criterion in Layered Rock Mass Engineering Advances in Civil Engineering |
title | Application of the Slope Coefficient of the Equivalent M–C Criterion in Layered Rock Mass Engineering |
title_full | Application of the Slope Coefficient of the Equivalent M–C Criterion in Layered Rock Mass Engineering |
title_fullStr | Application of the Slope Coefficient of the Equivalent M–C Criterion in Layered Rock Mass Engineering |
title_full_unstemmed | Application of the Slope Coefficient of the Equivalent M–C Criterion in Layered Rock Mass Engineering |
title_short | Application of the Slope Coefficient of the Equivalent M–C Criterion in Layered Rock Mass Engineering |
title_sort | application of the slope coefficient of the equivalent m c criterion in layered rock mass engineering |
url | http://dx.doi.org/10.1155/2022/2913942 |
work_keys_str_mv | AT qianliu applicationoftheslopecoefficientoftheequivalentmccriterioninlayeredrockmassengineering AT qizhihu applicationoftheslopecoefficientoftheequivalentmccriterioninlayeredrockmassengineering AT fanzhang applicationoftheslopecoefficientoftheequivalentmccriterioninlayeredrockmassengineering AT zhigangding applicationoftheslopecoefficientoftheequivalentmccriterioninlayeredrockmassengineering AT wenchengbao applicationoftheslopecoefficientoftheequivalentmccriterioninlayeredrockmassengineering |