Changes in cortical beta power predict motor control flexibility, not vigor

Abstract The amplitude of beta-band activity (β power; 13-30 Hz) over motor cortical regions is used to assess and decode movement in clinical settings and brain-computer interfaces, as β power is often assumed to predict the strength of the brain’s motor output, or “vigor”. However, recent conflict...

Full description

Saved in:
Bibliographic Details
Main Authors: Emeline Pierrieau, Claire Dussard, Axel Plantey--Veux, Cloé Guerrini, Brian Lau, Léa Pillette, Nathalie George, Camille Jeunet-Kelway
Format: Article
Language:English
Published: Nature Portfolio 2025-07-01
Series:Communications Biology
Online Access:https://doi.org/10.1038/s42003-025-08465-2
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849761713277108224
author Emeline Pierrieau
Claire Dussard
Axel Plantey--Veux
Cloé Guerrini
Brian Lau
Léa Pillette
Nathalie George
Camille Jeunet-Kelway
author_facet Emeline Pierrieau
Claire Dussard
Axel Plantey--Veux
Cloé Guerrini
Brian Lau
Léa Pillette
Nathalie George
Camille Jeunet-Kelway
author_sort Emeline Pierrieau
collection DOAJ
description Abstract The amplitude of beta-band activity (β power; 13-30 Hz) over motor cortical regions is used to assess and decode movement in clinical settings and brain-computer interfaces, as β power is often assumed to predict the strength of the brain’s motor output, or “vigor”. However, recent conflicting evidence challenges this assumption and underscores the need to clarify the relationship between β power and movement. In this study, sixty participants were trained to self-regulate β power using electroencephalography-based neurofeedback before performing different motor tasks. Results show that β power modulations can impact different motor variables, or the same variables in opposite directions, depending on task constraints. Importantly, downregulation of β power is associated with better task performance regardless of whether performance implied increasing or decreasing motor vigor. These findings demonstrate that β power should be interpreted as a measure of motor flexibility, which underlies adaptation to environmental constraints, rather than vigor.
format Article
id doaj-art-bb565100798d464f8d6c01bcc83ff7ea
institution DOAJ
issn 2399-3642
language English
publishDate 2025-07-01
publisher Nature Portfolio
record_format Article
series Communications Biology
spelling doaj-art-bb565100798d464f8d6c01bcc83ff7ea2025-08-20T03:05:56ZengNature PortfolioCommunications Biology2399-36422025-07-018111310.1038/s42003-025-08465-2Changes in cortical beta power predict motor control flexibility, not vigorEmeline Pierrieau0Claire Dussard1Axel Plantey--Veux2Cloé Guerrini3Brian Lau4Léa Pillette5Nathalie George6Camille Jeunet-Kelway7Université de Bordeaux, CNRS, INCIA, UMR 5287Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital de la Pitié SalpêtrièreUniversité de Bordeaux, CNRS, INCIA, UMR 5287Université de Bordeaux, CNRS, INCIA, UMR 5287Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital de la Pitié SalpêtrièreUniversité de Rennes, CNRS, IRISA, UMR 6074Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital de la Pitié SalpêtrièreUniversité de Bordeaux, CNRS, INCIA, UMR 5287Abstract The amplitude of beta-band activity (β power; 13-30 Hz) over motor cortical regions is used to assess and decode movement in clinical settings and brain-computer interfaces, as β power is often assumed to predict the strength of the brain’s motor output, or “vigor”. However, recent conflicting evidence challenges this assumption and underscores the need to clarify the relationship between β power and movement. In this study, sixty participants were trained to self-regulate β power using electroencephalography-based neurofeedback before performing different motor tasks. Results show that β power modulations can impact different motor variables, or the same variables in opposite directions, depending on task constraints. Importantly, downregulation of β power is associated with better task performance regardless of whether performance implied increasing or decreasing motor vigor. These findings demonstrate that β power should be interpreted as a measure of motor flexibility, which underlies adaptation to environmental constraints, rather than vigor.https://doi.org/10.1038/s42003-025-08465-2
spellingShingle Emeline Pierrieau
Claire Dussard
Axel Plantey--Veux
Cloé Guerrini
Brian Lau
Léa Pillette
Nathalie George
Camille Jeunet-Kelway
Changes in cortical beta power predict motor control flexibility, not vigor
Communications Biology
title Changes in cortical beta power predict motor control flexibility, not vigor
title_full Changes in cortical beta power predict motor control flexibility, not vigor
title_fullStr Changes in cortical beta power predict motor control flexibility, not vigor
title_full_unstemmed Changes in cortical beta power predict motor control flexibility, not vigor
title_short Changes in cortical beta power predict motor control flexibility, not vigor
title_sort changes in cortical beta power predict motor control flexibility not vigor
url https://doi.org/10.1038/s42003-025-08465-2
work_keys_str_mv AT emelinepierrieau changesincorticalbetapowerpredictmotorcontrolflexibilitynotvigor
AT clairedussard changesincorticalbetapowerpredictmotorcontrolflexibilitynotvigor
AT axelplanteyveux changesincorticalbetapowerpredictmotorcontrolflexibilitynotvigor
AT cloeguerrini changesincorticalbetapowerpredictmotorcontrolflexibilitynotvigor
AT brianlau changesincorticalbetapowerpredictmotorcontrolflexibilitynotvigor
AT leapillette changesincorticalbetapowerpredictmotorcontrolflexibilitynotvigor
AT nathaliegeorge changesincorticalbetapowerpredictmotorcontrolflexibilitynotvigor
AT camillejeunetkelway changesincorticalbetapowerpredictmotorcontrolflexibilitynotvigor