Feature Constraints Map Generation Models Integrating Generative Adversarial and Diffusion Denoising

The accelerated evolution of remote sensing technology has intensified the demand for real-time tile map generation, highlighting the limitations of conventional mapping approaches that rely on manual cartography and field surveys. To address the critical need for rapid cartographic updates, this st...

Full description

Saved in:
Bibliographic Details
Main Authors: Chenxing Sun, Xixi Fan, Xiechun Lu, Laner Zhou, Junli Zhao, Yuxuan Dong, Zhanlong Chen
Format: Article
Language:English
Published: MDPI AG 2025-08-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/15/2683
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The accelerated evolution of remote sensing technology has intensified the demand for real-time tile map generation, highlighting the limitations of conventional mapping approaches that rely on manual cartography and field surveys. To address the critical need for rapid cartographic updates, this study presents a novel multi-stage generative framework that synergistically integrates Generative Adversarial Networks (GANs) with Diffusion Denoising Models (DMs) for high-fidelity map generation from remote sensing imagery. Specifically, our proposed architecture first employs GANs for rapid preliminary map generation, followed by a cascaded diffusion process that progressively refines topological details and spatial accuracy through iterative denoising. Furthermore, we propose a hybrid attention mechanism that strategically combines channel-wise feature recalibration with coordinate-aware spatial modulation, enabling the enhanced discrimination of geographic features under challenging conditions involving edge ambiguity and environmental noise. Quantitative evaluations demonstrate that our method significantly surpasses established baselines in both structural consistency and geometric fidelity. This framework establishes an operational paradigm for automated, rapid-response cartography, demonstrating a particular utility in time-sensitive applications including disaster impact assessment, unmapped terrain documentation, and dynamic environmental surveillance.
ISSN:2072-4292