Convergence analysis of a dual-wind discontinuous Galerkin method for an elliptic optimal control problem with control constraints

This paper investigates a symmetric dual-wind discontinuous Galerkin (DWDG) method for solving an elliptic optimal control problem with control constraints. The governing constraint is an elliptic partial differential equation (PDE), which is discretized using the symmetric DWDG approach. We derive...

Full description

Saved in:
Bibliographic Details
Main Authors: Satyajith Bommana Boyana, Thomas Lewis, Sijing Liu, Yi Zhang
Format: Article
Language:English
Published: Elsevier 2025-08-01
Series:Results in Applied Mathematics
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2590037425000883
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper investigates a symmetric dual-wind discontinuous Galerkin (DWDG) method for solving an elliptic optimal control problem with control constraints. The governing constraint is an elliptic partial differential equation (PDE), which is discretized using the symmetric DWDG approach. We derive error estimates in the energy norm for both the state and the adjoint state, as well as in the L2 norm of the control variable. Numerical experiments are provided to demonstrate the robustness and effectiveness of the developed scheme.
ISSN:2590-0374