Sharp Coefficient Bounds for Analytic Functions Related to Bounded Turning Functions

Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">B</mi></semantics></math></inline-formula> denote the class of bounded turning functions <inline...

Full description

Saved in:
Bibliographic Details
Main Authors: Sudhansu Palei, Madan Mohan Soren, Luminiţa-Ioana Cotîrlǎ, Daniel Breaz
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/11/1845
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849331038240636928
author Sudhansu Palei
Madan Mohan Soren
Luminiţa-Ioana Cotîrlǎ
Daniel Breaz
author_facet Sudhansu Palei
Madan Mohan Soren
Luminiţa-Ioana Cotîrlǎ
Daniel Breaz
author_sort Sudhansu Palei
collection DOAJ
description Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">B</mi></semantics></math></inline-formula> denote the class of bounded turning functions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">F</mi></semantics></math></inline-formula> analytic in the open unit disk, where the image of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi mathvariant="script">F</mi><mo>′</mo></msup><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is contained in the domain <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Ω</mo><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><mi>cosh</mi><mi>z</mi><mo>+</mo><mstyle scriptlevel="0" displaystyle="true"><mfrac><mrow><mn>2</mn><mi>z</mi></mrow><mrow><mn>2</mn><mo>−</mo><msup><mi>z</mi><mn>2</mn></msup></mrow></mfrac></mstyle></mrow></semantics></math></inline-formula>. This article determines sharp coefficient bounds, a Fekete–Szegö-type inequality, and second- and third-order Hankel determinants for functions in the class <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">B</mi></semantics></math></inline-formula>. Additionally, we obtain sharp Krushkal and Zalcman functional-type inequalities related to the logarithmic coefficient for functions belonging to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">B</mi></semantics></math></inline-formula>.
format Article
id doaj-art-bb2152c358084a4faa38f17fec8c6ef4
institution Kabale University
issn 2227-7390
language English
publishDate 2025-06-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-bb2152c358084a4faa38f17fec8c6ef42025-08-20T03:46:45ZengMDPI AGMathematics2227-73902025-06-011311184510.3390/math13111845Sharp Coefficient Bounds for Analytic Functions Related to Bounded Turning FunctionsSudhansu Palei0Madan Mohan Soren1Luminiţa-Ioana Cotîrlǎ2Daniel Breaz3Department of Mathematics, Berhampur University, Berhampur 760007, Odisha, IndiaDepartment of Mathematics, Berhampur University, Berhampur 760007, Odisha, IndiaDepartment of Mathematics, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, RomaniaDepartment of Mathematics, “1 Decembrie 1918” University of Alba Iulia, 510009 Alba Iulia, RomaniaLet <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">B</mi></semantics></math></inline-formula> denote the class of bounded turning functions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">F</mi></semantics></math></inline-formula> analytic in the open unit disk, where the image of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi mathvariant="script">F</mi><mo>′</mo></msup><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is contained in the domain <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Ω</mo><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><mi>cosh</mi><mi>z</mi><mo>+</mo><mstyle scriptlevel="0" displaystyle="true"><mfrac><mrow><mn>2</mn><mi>z</mi></mrow><mrow><mn>2</mn><mo>−</mo><msup><mi>z</mi><mn>2</mn></msup></mrow></mfrac></mstyle></mrow></semantics></math></inline-formula>. This article determines sharp coefficient bounds, a Fekete–Szegö-type inequality, and second- and third-order Hankel determinants for functions in the class <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">B</mi></semantics></math></inline-formula>. Additionally, we obtain sharp Krushkal and Zalcman functional-type inequalities related to the logarithmic coefficient for functions belonging to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">B</mi></semantics></math></inline-formula>.https://www.mdpi.com/2227-7390/13/11/1845analytic functionsbounded turning functionscoefficient boundsFekete–Szegö-type inequalityHankel determinantKrushkal and Zalcman functional
spellingShingle Sudhansu Palei
Madan Mohan Soren
Luminiţa-Ioana Cotîrlǎ
Daniel Breaz
Sharp Coefficient Bounds for Analytic Functions Related to Bounded Turning Functions
Mathematics
analytic functions
bounded turning functions
coefficient bounds
Fekete–Szegö-type inequality
Hankel determinant
Krushkal and Zalcman functional
title Sharp Coefficient Bounds for Analytic Functions Related to Bounded Turning Functions
title_full Sharp Coefficient Bounds for Analytic Functions Related to Bounded Turning Functions
title_fullStr Sharp Coefficient Bounds for Analytic Functions Related to Bounded Turning Functions
title_full_unstemmed Sharp Coefficient Bounds for Analytic Functions Related to Bounded Turning Functions
title_short Sharp Coefficient Bounds for Analytic Functions Related to Bounded Turning Functions
title_sort sharp coefficient bounds for analytic functions related to bounded turning functions
topic analytic functions
bounded turning functions
coefficient bounds
Fekete–Szegö-type inequality
Hankel determinant
Krushkal and Zalcman functional
url https://www.mdpi.com/2227-7390/13/11/1845
work_keys_str_mv AT sudhansupalei sharpcoefficientboundsforanalyticfunctionsrelatedtoboundedturningfunctions
AT madanmohansoren sharpcoefficientboundsforanalyticfunctionsrelatedtoboundedturningfunctions
AT luminitaioanacotirla sharpcoefficientboundsforanalyticfunctionsrelatedtoboundedturningfunctions
AT danielbreaz sharpcoefficientboundsforanalyticfunctionsrelatedtoboundedturningfunctions