Dual α-globin-truncated erythropoietin receptor knockin restores hemoglobin production in α-thalassemia-derived erythroid cells

Summary: The most severe form of α-thalassemia results from loss of all four copies of α-globin. Postnatally, patients face challenges similar to β-thalassemia, including severe anemia and erythrotoxicity due to the imbalance of β-globin and α-globin chains. Despite progress in genome editing treatm...

Full description

Saved in:
Bibliographic Details
Main Authors: Simon N. Chu, Eric Soupene, Devesh Sharma, Roshani Sinha, Travis McCreary, Britney Hernandez, Huifeng Shen, Beeke Wienert, Chance Bowman, Han Yin, Benjamin J. Lesch, Kun Jia, Kathleen A. Romero, Zachary Kostamo, Yankai Zhang, Tammy Tran, Marco Cordero, Shota Homma, Jessica P. Hampton, James M. Gardner, Bruce R. Conklin, Tippi C. MacKenzie, Vivien A. Sheehan, Matthew H. Porteus, M. Kyle Cromer
Format: Article
Language:English
Published: Elsevier 2025-01-01
Series:Cell Reports
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S221112472401492X
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841560138142449664
author Simon N. Chu
Eric Soupene
Devesh Sharma
Roshani Sinha
Travis McCreary
Britney Hernandez
Huifeng Shen
Beeke Wienert
Chance Bowman
Han Yin
Benjamin J. Lesch
Kun Jia
Kathleen A. Romero
Zachary Kostamo
Yankai Zhang
Tammy Tran
Marco Cordero
Shota Homma
Jessica P. Hampton
James M. Gardner
Bruce R. Conklin
Tippi C. MacKenzie
Vivien A. Sheehan
Matthew H. Porteus
M. Kyle Cromer
author_facet Simon N. Chu
Eric Soupene
Devesh Sharma
Roshani Sinha
Travis McCreary
Britney Hernandez
Huifeng Shen
Beeke Wienert
Chance Bowman
Han Yin
Benjamin J. Lesch
Kun Jia
Kathleen A. Romero
Zachary Kostamo
Yankai Zhang
Tammy Tran
Marco Cordero
Shota Homma
Jessica P. Hampton
James M. Gardner
Bruce R. Conklin
Tippi C. MacKenzie
Vivien A. Sheehan
Matthew H. Porteus
M. Kyle Cromer
author_sort Simon N. Chu
collection DOAJ
description Summary: The most severe form of α-thalassemia results from loss of all four copies of α-globin. Postnatally, patients face challenges similar to β-thalassemia, including severe anemia and erythrotoxicity due to the imbalance of β-globin and α-globin chains. Despite progress in genome editing treatments for β-thalassemia, there is no analogous curative option for α-thalassemia. To address this, we designed a Cas9/AAV6-mediated genome editing strategy that integrates a functional α-globin gene into the β-globin locus in α-thalassemia patient-derived hematopoietic stem and progenitor cells (HSPCs). Incorporation of a truncated erythropoietin receptor transgene into the α-globin integration cassette significantly increased erythropoietic output from edited HSPCs and led to the most robust production of α-globin, and consequently hemoglobin tetramers. By directing edited HSPCs toward increased production of clinically relevant erythroid cells, this approach has the potential to mitigate the limitations of current treatments for the hemoglobinopathies, including low genome editing and low engraftment rates.
format Article
id doaj-art-bb096df3b6dc447b87361221593d24f6
institution Kabale University
issn 2211-1247
language English
publishDate 2025-01-01
publisher Elsevier
record_format Article
series Cell Reports
spelling doaj-art-bb096df3b6dc447b87361221593d24f62025-01-05T04:27:56ZengElsevierCell Reports2211-12472025-01-01441115141Dual α-globin-truncated erythropoietin receptor knockin restores hemoglobin production in α-thalassemia-derived erythroid cellsSimon N. Chu0Eric Soupene1Devesh Sharma2Roshani Sinha3Travis McCreary4Britney Hernandez5Huifeng Shen6Beeke Wienert7Chance Bowman8Han Yin9Benjamin J. Lesch10Kun Jia11Kathleen A. Romero12Zachary Kostamo13Yankai Zhang14Tammy Tran15Marco Cordero16Shota Homma17Jessica P. Hampton18James M. Gardner19Bruce R. Conklin20Tippi C. MacKenzie21Vivien A. Sheehan22Matthew H. Porteus23M. Kyle Cromer24Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli & Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USADepartment of Pediatrics, University of California, San Francisco, Oakland, CA 94609, USADepartment of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli & Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USADepartment of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli & Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USADepartment of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli & Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USAAflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30329, USAAflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30329, USAGladstone Institutes, San Francisco, CA 94158, USADepartment of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli & Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USADepartment of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USADepartment of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli & Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USADepartment of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli & Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USAAflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30329, USAAflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30329, USAAflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30329, USADepartment of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli & Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USADepartment of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli & Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USADepartment of Genetics, Stanford University, Stanford, CA 94305, USADepartment of Pediatrics, Stanford University, Stanford, CA 94305, USADepartment of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USAGladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USADepartment of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli & Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USAAflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30329, USADepartment of Pediatrics, Stanford University, Stanford, CA 94305, USADepartment of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli & Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Corresponding authorSummary: The most severe form of α-thalassemia results from loss of all four copies of α-globin. Postnatally, patients face challenges similar to β-thalassemia, including severe anemia and erythrotoxicity due to the imbalance of β-globin and α-globin chains. Despite progress in genome editing treatments for β-thalassemia, there is no analogous curative option for α-thalassemia. To address this, we designed a Cas9/AAV6-mediated genome editing strategy that integrates a functional α-globin gene into the β-globin locus in α-thalassemia patient-derived hematopoietic stem and progenitor cells (HSPCs). Incorporation of a truncated erythropoietin receptor transgene into the α-globin integration cassette significantly increased erythropoietic output from edited HSPCs and led to the most robust production of α-globin, and consequently hemoglobin tetramers. By directing edited HSPCs toward increased production of clinically relevant erythroid cells, this approach has the potential to mitigate the limitations of current treatments for the hemoglobinopathies, including low genome editing and low engraftment rates.http://www.sciencedirect.com/science/article/pii/S221112472401492XCP: Stem cell research
spellingShingle Simon N. Chu
Eric Soupene
Devesh Sharma
Roshani Sinha
Travis McCreary
Britney Hernandez
Huifeng Shen
Beeke Wienert
Chance Bowman
Han Yin
Benjamin J. Lesch
Kun Jia
Kathleen A. Romero
Zachary Kostamo
Yankai Zhang
Tammy Tran
Marco Cordero
Shota Homma
Jessica P. Hampton
James M. Gardner
Bruce R. Conklin
Tippi C. MacKenzie
Vivien A. Sheehan
Matthew H. Porteus
M. Kyle Cromer
Dual α-globin-truncated erythropoietin receptor knockin restores hemoglobin production in α-thalassemia-derived erythroid cells
Cell Reports
CP: Stem cell research
title Dual α-globin-truncated erythropoietin receptor knockin restores hemoglobin production in α-thalassemia-derived erythroid cells
title_full Dual α-globin-truncated erythropoietin receptor knockin restores hemoglobin production in α-thalassemia-derived erythroid cells
title_fullStr Dual α-globin-truncated erythropoietin receptor knockin restores hemoglobin production in α-thalassemia-derived erythroid cells
title_full_unstemmed Dual α-globin-truncated erythropoietin receptor knockin restores hemoglobin production in α-thalassemia-derived erythroid cells
title_short Dual α-globin-truncated erythropoietin receptor knockin restores hemoglobin production in α-thalassemia-derived erythroid cells
title_sort dual α globin truncated erythropoietin receptor knockin restores hemoglobin production in α thalassemia derived erythroid cells
topic CP: Stem cell research
url http://www.sciencedirect.com/science/article/pii/S221112472401492X
work_keys_str_mv AT simonnchu dualaglobintruncatederythropoietinreceptorknockinrestoreshemoglobinproductioninathalassemiaderivederythroidcells
AT ericsoupene dualaglobintruncatederythropoietinreceptorknockinrestoreshemoglobinproductioninathalassemiaderivederythroidcells
AT deveshsharma dualaglobintruncatederythropoietinreceptorknockinrestoreshemoglobinproductioninathalassemiaderivederythroidcells
AT roshanisinha dualaglobintruncatederythropoietinreceptorknockinrestoreshemoglobinproductioninathalassemiaderivederythroidcells
AT travismccreary dualaglobintruncatederythropoietinreceptorknockinrestoreshemoglobinproductioninathalassemiaderivederythroidcells
AT britneyhernandez dualaglobintruncatederythropoietinreceptorknockinrestoreshemoglobinproductioninathalassemiaderivederythroidcells
AT huifengshen dualaglobintruncatederythropoietinreceptorknockinrestoreshemoglobinproductioninathalassemiaderivederythroidcells
AT beekewienert dualaglobintruncatederythropoietinreceptorknockinrestoreshemoglobinproductioninathalassemiaderivederythroidcells
AT chancebowman dualaglobintruncatederythropoietinreceptorknockinrestoreshemoglobinproductioninathalassemiaderivederythroidcells
AT hanyin dualaglobintruncatederythropoietinreceptorknockinrestoreshemoglobinproductioninathalassemiaderivederythroidcells
AT benjaminjlesch dualaglobintruncatederythropoietinreceptorknockinrestoreshemoglobinproductioninathalassemiaderivederythroidcells
AT kunjia dualaglobintruncatederythropoietinreceptorknockinrestoreshemoglobinproductioninathalassemiaderivederythroidcells
AT kathleenaromero dualaglobintruncatederythropoietinreceptorknockinrestoreshemoglobinproductioninathalassemiaderivederythroidcells
AT zacharykostamo dualaglobintruncatederythropoietinreceptorknockinrestoreshemoglobinproductioninathalassemiaderivederythroidcells
AT yankaizhang dualaglobintruncatederythropoietinreceptorknockinrestoreshemoglobinproductioninathalassemiaderivederythroidcells
AT tammytran dualaglobintruncatederythropoietinreceptorknockinrestoreshemoglobinproductioninathalassemiaderivederythroidcells
AT marcocordero dualaglobintruncatederythropoietinreceptorknockinrestoreshemoglobinproductioninathalassemiaderivederythroidcells
AT shotahomma dualaglobintruncatederythropoietinreceptorknockinrestoreshemoglobinproductioninathalassemiaderivederythroidcells
AT jessicaphampton dualaglobintruncatederythropoietinreceptorknockinrestoreshemoglobinproductioninathalassemiaderivederythroidcells
AT jamesmgardner dualaglobintruncatederythropoietinreceptorknockinrestoreshemoglobinproductioninathalassemiaderivederythroidcells
AT brucerconklin dualaglobintruncatederythropoietinreceptorknockinrestoreshemoglobinproductioninathalassemiaderivederythroidcells
AT tippicmackenzie dualaglobintruncatederythropoietinreceptorknockinrestoreshemoglobinproductioninathalassemiaderivederythroidcells
AT vivienasheehan dualaglobintruncatederythropoietinreceptorknockinrestoreshemoglobinproductioninathalassemiaderivederythroidcells
AT matthewhporteus dualaglobintruncatederythropoietinreceptorknockinrestoreshemoglobinproductioninathalassemiaderivederythroidcells
AT mkylecromer dualaglobintruncatederythropoietinreceptorknockinrestoreshemoglobinproductioninathalassemiaderivederythroidcells