Molecular Research Progress on Gametophytic Self-Incompatibility in Rosaceae Species
Self-incompatibility (SI) is a complex mechanism that prevents plants from self-fertilizing to preserve and promote genetic variability. The angiosperm species have developed two different SI systems, the sporophytic (SSI) and the gametophytic (GSI) systems. SI is a significant impediment to steady...
Saved in:
| Main Authors: | , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-10-01
|
| Series: | Horticulturae |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2311-7524/10/10/1101 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Self-incompatibility (SI) is a complex mechanism that prevents plants from self-fertilizing to preserve and promote genetic variability. The angiosperm species have developed two different SI systems, the sporophytic (SSI) and the gametophytic (GSI) systems. SI is a significant impediment to steady fruit production in fruit tree species of the Rosaceae. In Rosaceae, GSI is genetically regulated via a single locus, named the ‘S-locus’, which includes a minimum of two polymorphic and relatively intercorrelated S genes: a pistil-expressed <i>S-RNase</i> gene and several pollen-expressed <i>SFBB</i> (S-locus F-Box Brothers) or <i>SFB</i> (S haplotype-specific F-box protein). This necessitates the interaction of <i>S-RNases</i> with the male determinants. Although genetic and molecular analyses of S genes have shown that mutations in both pistils and pollen-specific components induce self-compatibility in many species and cultivars, other genes or molecules outside the S-locus can co-participate in the male gamete rejection in GSI. However, we highlight and synthesize the most recent knowledge on different mechanisms of GSI in Rosaceae in this current review. |
|---|---|
| ISSN: | 2311-7524 |