Application of the Algebraic Extension Method to the Construction of Orthogonal Bases for Partial Digital Convolutions

Mathematical tools have been developed that are analogous to the tool that allows one to reduce the description of linear systems in terms of convolution operations to a description in terms of amplitude-frequency characteristics. These tools are intended for use in cases where the system under cons...

Full description

Saved in:
Bibliographic Details
Main Authors: Aruzhan Kadyrzhan, Akhat Bakirov, Dina Shaltykova, Ibragim Suleimenov
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Algorithms
Subjects:
Online Access:https://www.mdpi.com/1999-4893/17/11/496
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850267670987931648
author Aruzhan Kadyrzhan
Akhat Bakirov
Dina Shaltykova
Ibragim Suleimenov
author_facet Aruzhan Kadyrzhan
Akhat Bakirov
Dina Shaltykova
Ibragim Suleimenov
author_sort Aruzhan Kadyrzhan
collection DOAJ
description Mathematical tools have been developed that are analogous to the tool that allows one to reduce the description of linear systems in terms of convolution operations to a description in terms of amplitude-frequency characteristics. These tools are intended for use in cases where the system under consideration is described by partial digital convolutions. The basis of the proposed approach is the Fourier–Galois transform using orthogonal bases in corresponding fields. As applied to partial convolutions, the Fourier–Galois transform is decomposed into a set of such transforms, each of which corresponds to operations in a certain Galois field. It is shown that for adequate application of the Fourier–Galois transform to systems described by partial convolutions, it is necessary to ensure the same number of cycles in each of the transforms from the set specified above. To solve this problem, the method of algebraic extensions was used, a special case of which is the transition from real numbers to complex numbers. In this case, the number of cycles varies from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow><mo>/</mo><mrow><mi>k</mi></mrow></mrow></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi></mrow></semantics></math></inline-formula> is a prime number, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi></mrow></semantics></math></inline-formula> are integers, and an arbitrary number divisor of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></semantics></math></inline-formula> can be chosen as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi></mrow></semantics></math></inline-formula>. This allows us to produce partial Fourier–Galois transforms corresponding to different Galois fields, for the same number of cycles. A specific example is presented demonstrating the constructiveness of the proposed approach.
format Article
id doaj-art-ba8a618d5ffd477090c78ffff34d0878
institution OA Journals
issn 1999-4893
language English
publishDate 2024-11-01
publisher MDPI AG
record_format Article
series Algorithms
spelling doaj-art-ba8a618d5ffd477090c78ffff34d08782025-08-20T01:53:42ZengMDPI AGAlgorithms1999-48932024-11-01171149610.3390/a17110496Application of the Algebraic Extension Method to the Construction of Orthogonal Bases for Partial Digital ConvolutionsAruzhan Kadyrzhan0Akhat Bakirov1Dina Shaltykova2Ibragim Suleimenov3Institute of Communications and Space Engineering, Gumarbek Daukeev Almaty University of Power Engineering and Communications, Almaty 050040, KazakhstanInstitute of Communications and Space Engineering, Gumarbek Daukeev Almaty University of Power Engineering and Communications, Almaty 050040, KazakhstanNational Engineering Academy of the Republic of Kazakhstan, Almaty 050010, KazakhstanNational Engineering Academy of the Republic of Kazakhstan, Almaty 050010, KazakhstanMathematical tools have been developed that are analogous to the tool that allows one to reduce the description of linear systems in terms of convolution operations to a description in terms of amplitude-frequency characteristics. These tools are intended for use in cases where the system under consideration is described by partial digital convolutions. The basis of the proposed approach is the Fourier–Galois transform using orthogonal bases in corresponding fields. As applied to partial convolutions, the Fourier–Galois transform is decomposed into a set of such transforms, each of which corresponds to operations in a certain Galois field. It is shown that for adequate application of the Fourier–Galois transform to systems described by partial convolutions, it is necessary to ensure the same number of cycles in each of the transforms from the set specified above. To solve this problem, the method of algebraic extensions was used, a special case of which is the transition from real numbers to complex numbers. In this case, the number of cycles varies from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow><mo>/</mo><mrow><mi>k</mi></mrow></mrow></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi></mrow></semantics></math></inline-formula> is a prime number, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi></mrow></semantics></math></inline-formula> are integers, and an arbitrary number divisor of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></semantics></math></inline-formula> can be chosen as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi></mrow></semantics></math></inline-formula>. This allows us to produce partial Fourier–Galois transforms corresponding to different Galois fields, for the same number of cycles. A specific example is presented demonstrating the constructiveness of the proposed approach.https://www.mdpi.com/1999-4893/17/11/496orthogonal basesalgebraic extensionsdigital convolutionsFourier–Galois transformstransfer functionlinear systems
spellingShingle Aruzhan Kadyrzhan
Akhat Bakirov
Dina Shaltykova
Ibragim Suleimenov
Application of the Algebraic Extension Method to the Construction of Orthogonal Bases for Partial Digital Convolutions
Algorithms
orthogonal bases
algebraic extensions
digital convolutions
Fourier–Galois transforms
transfer function
linear systems
title Application of the Algebraic Extension Method to the Construction of Orthogonal Bases for Partial Digital Convolutions
title_full Application of the Algebraic Extension Method to the Construction of Orthogonal Bases for Partial Digital Convolutions
title_fullStr Application of the Algebraic Extension Method to the Construction of Orthogonal Bases for Partial Digital Convolutions
title_full_unstemmed Application of the Algebraic Extension Method to the Construction of Orthogonal Bases for Partial Digital Convolutions
title_short Application of the Algebraic Extension Method to the Construction of Orthogonal Bases for Partial Digital Convolutions
title_sort application of the algebraic extension method to the construction of orthogonal bases for partial digital convolutions
topic orthogonal bases
algebraic extensions
digital convolutions
Fourier–Galois transforms
transfer function
linear systems
url https://www.mdpi.com/1999-4893/17/11/496
work_keys_str_mv AT aruzhankadyrzhan applicationofthealgebraicextensionmethodtotheconstructionoforthogonalbasesforpartialdigitalconvolutions
AT akhatbakirov applicationofthealgebraicextensionmethodtotheconstructionoforthogonalbasesforpartialdigitalconvolutions
AT dinashaltykova applicationofthealgebraicextensionmethodtotheconstructionoforthogonalbasesforpartialdigitalconvolutions
AT ibragimsuleimenov applicationofthealgebraicextensionmethodtotheconstructionoforthogonalbasesforpartialdigitalconvolutions