A Novel Detrended Fluctuation Analysis Method for Gear Fault Diagnosis Based on Variational Mode Decomposition
The vibration signal of heavy gearbox has the nonlinear and nonstationary characteristic, which makes the gear fault diagnosis difficult. Moreover, the useful fault information is mainly focused on the high-frequency components of the raw signal, which also affects the fault feature extraction from...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2018-01-01
|
| Series: | Shock and Vibration |
| Online Access: | http://dx.doi.org/10.1155/2018/7045127 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The vibration signal of heavy gearbox has the nonlinear and nonstationary characteristic, which makes the gear fault diagnosis difficult. Moreover, the useful fault information is mainly focused on the high-frequency components of the raw signal, which also affects the fault feature extraction from vibration signal. For this reason, a novel signal processing method based on variational mode decomposition (VMD) and detrended fluctuation analysis (DFA) is proposed to diagnose the gear faults of heavy gearbox. Since high-frequency component contains more fault information, the raw vibration signal is decomposed several mode components by VMD, which can remove the low-frequency component to retain the high-frequency component. Moreover, the most sensitive mode component is selected in these high-frequency components by a maximal indicator, which is composed of kurtosis and correlation coefficient. The most sensitive mode component is calculated by DFA to obtain bi-logarithmic map, and the sliding windowing algorithm is employed to capture turning point of the bi-logarithmic map, thus extracting the fault feature of small time scale to identify gear faults. The effectiveness of the proposed method for fault diagnosis is validated by experimental data analysis, and the comparison results demonstrate that the recognition rate of gear faults condition have marked improvement by proposed method than the DFA of small time scale (STS-DFA) and EMD-DFA. |
|---|---|
| ISSN: | 1070-9622 1875-9203 |