Optimization of Impedance-Based Real-Time Assay in xCELLigence RTCA SP16 Device for the Analysis of Fully Differentiated Caco-2 Cells

Impedance-based cellular assays allow determination of biological functions of cell populations in real-time by measuring electrical impedance. As compared to end-point assays, such as trans-epithelial electrical resistance assays, for example, they enable fast, non-invasive, and easy detection of c...

Full description

Saved in:
Bibliographic Details
Main Authors: Nadia Khan, Magdalena Kurnik-Łucka, Maja Kudrycka, Krzysztof Gil, Gniewomir Latacz
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/15/8298
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Impedance-based cellular assays allow determination of biological functions of cell populations in real-time by measuring electrical impedance. As compared to end-point assays, such as trans-epithelial electrical resistance assays, for example, they enable fast, non-invasive, and easy detection of cell kinetics—their growth, attachment, and interaction can be monitored over time. In our experiment, Caco-2 cells were cultured on E-plates 16. Next, fully differentiated cells were treated with either TNF-α or 3,4-dihydroxy-L-phenylalanine (L-DOPA). We aimed to verify the possibility of real-time testing of the viability, monolayer formation, and integrity (i.e., the presence of a functional and polarized monolayer) of Caco-2 cells by the xCELLigence real-time cell analyzer (RTCA) S16 system (Agilent Technologies).
ISSN:2076-3417