Ugięcia Płyt Ortotropowych o Zmiennych Sztywnościach i Pewnych Nieciągłych Warunkach Brzegowych

The paper contains the formally exact solution of the differential equation of bending of a plate which rests on an elastic foundation, in the case when the rigidities and the foundation coefficient are polynomials of the single variable y; the edges x = 0 and x = a of the plate are simply supported...

Full description

Saved in:
Bibliographic Details
Main Author: K.H. Bojda
Format: Article
Language:English
Published: Institute of Fundamental Technological Research 1971-12-01
Series:Engineering Transactions
Online Access:https://et.ippt.pan.pl/index.php/et/article/view/2552
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849321189258821632
author K.H. Bojda
author_facet K.H. Bojda
author_sort K.H. Bojda
collection DOAJ
description The paper contains the formally exact solution of the differential equation of bending of a plate which rests on an elastic foundation, in the case when the rigidities and the foundation coefficient are polynomials of the single variable y; the edges x = 0 and x = a of the plate are simply supported, the boundary conditions along the edge y = 0 being discontinuous. The solution has the form of a double polynomial – trigonometric series. The coefficients of the series are obtained from simple recurrent formulae and from infinite systems of algebraic equations. The solutions are presented concerning continuous plates resting: on elastic supports. The possibility is indicated of obtaining simple solutions in the cases of infinite and semi-infinite plate strips. The solution is derived by means of the algebraic derivative.
format Article
id doaj-art-ba57bdda54ee41f39b2d5ef224f7587b
institution Kabale University
issn 0867-888X
2450-8071
language English
publishDate 1971-12-01
publisher Institute of Fundamental Technological Research
record_format Article
series Engineering Transactions
spelling doaj-art-ba57bdda54ee41f39b2d5ef224f7587b2025-08-20T03:49:49ZengInstitute of Fundamental Technological ResearchEngineering Transactions0867-888X2450-80711971-12-01194Ugięcia Płyt Ortotropowych o Zmiennych Sztywnościach i Pewnych Nieciągłych Warunkach BrzegowychK.H. Bojda0Politechnika Śląską w Gliwicach, GliwiceThe paper contains the formally exact solution of the differential equation of bending of a plate which rests on an elastic foundation, in the case when the rigidities and the foundation coefficient are polynomials of the single variable y; the edges x = 0 and x = a of the plate are simply supported, the boundary conditions along the edge y = 0 being discontinuous. The solution has the form of a double polynomial – trigonometric series. The coefficients of the series are obtained from simple recurrent formulae and from infinite systems of algebraic equations. The solutions are presented concerning continuous plates resting: on elastic supports. The possibility is indicated of obtaining simple solutions in the cases of infinite and semi-infinite plate strips. The solution is derived by means of the algebraic derivative. https://et.ippt.pan.pl/index.php/et/article/view/2552
spellingShingle K.H. Bojda
Ugięcia Płyt Ortotropowych o Zmiennych Sztywnościach i Pewnych Nieciągłych Warunkach Brzegowych
Engineering Transactions
title Ugięcia Płyt Ortotropowych o Zmiennych Sztywnościach i Pewnych Nieciągłych Warunkach Brzegowych
title_full Ugięcia Płyt Ortotropowych o Zmiennych Sztywnościach i Pewnych Nieciągłych Warunkach Brzegowych
title_fullStr Ugięcia Płyt Ortotropowych o Zmiennych Sztywnościach i Pewnych Nieciągłych Warunkach Brzegowych
title_full_unstemmed Ugięcia Płyt Ortotropowych o Zmiennych Sztywnościach i Pewnych Nieciągłych Warunkach Brzegowych
title_short Ugięcia Płyt Ortotropowych o Zmiennych Sztywnościach i Pewnych Nieciągłych Warunkach Brzegowych
title_sort ugiecia plyt ortotropowych o zmiennych sztywnosciach i pewnych nieciaglych warunkach brzegowych
url https://et.ippt.pan.pl/index.php/et/article/view/2552
work_keys_str_mv AT khbojda ugieciapłytortotropowychozmiennychsztywnosciachipewnychnieciagłychwarunkachbrzegowych