Balanced coarse-to-fine federated learning for noisy heterogeneous clients
Abstract For heterogeneous federated learning, each client cannot ensure the reliability due to the uncertainty in data collection, where different types of noise are always introduced into heterogeneous clients. Current existing methods rely on the specific assumptions for the distribution of noise...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Springer
2025-01-01
|
Series: | Complex & Intelligent Systems |
Subjects: | |
Online Access: | https://doi.org/10.1007/s40747-024-01694-8 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|