Preparation and Coagulation Behavior of a Novel Multiple Flocculant Based on Cationic Polymer, Hydroxy Aluminum, and Clay Minerals

Cationic polymer, hydroxy aluminum, and clay minerals are three flocculants with different action mechanisms and a more cost-efficient multiple flocculant can be prepared by compositing them through appropriate technology. All of attapulgite (ATP), clay minerals containing magnesium, aluminum, and s...

Full description

Saved in:
Bibliographic Details
Main Authors: Feng-shan Zhou, Xi Wang, Lin Zhou, Yang Liu
Format: Article
Language:English
Published: Wiley 2015-01-01
Series:Advances in Materials Science and Engineering
Online Access:http://dx.doi.org/10.1155/2015/581051
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cationic polymer, hydroxy aluminum, and clay minerals are three flocculants with different action mechanisms and a more cost-efficient multiple flocculant can be prepared by compositing them through appropriate technology. All of attapulgite (ATP), clay minerals containing magnesium, aluminum, and silicate, are porous environmental mineral material with good absorbability and have found wide applications in industrial sewage treatment. With polyaluminum chloride (PAC), poly(dimethyl diallyl ammonium chloride) (PDMDAAC), and attapulgite (ATP) clay being the main raw materials, multiple flocculant CMHa (liquid) with good storage stability was prepared and its optimized blending mass percent was PDMDAAC of 2%-3%, ATP of 4%–6%, and PAC of 20%–30%. The liquid poly(dimethyl diallyl ammonium chloride) (PDMDAAC) was firstly loaded on solid material in kneader and then mixed in certain proportion with PAC and ATP to prepare solid CMHa convenient for storage and transportation. The optimized mass ratio is PAC : ATP : PDMDAAC = 80 : 10 : 2.4. When this multiple flocculant was used to treat domestic sewage, coal washing sewage, dyeing wastewater, and papermaking wastewater, its equivalent dosage was just 50% of PAC, while overall production cost has been reduced to about 40%, viewing showing broad application prospect.
ISSN:1687-8434
1687-8442