Deep Learning-Assisted Microscopic Polarization Inspection of Micro-Nano Damage Precursors: Automatic, Non-Destructive Metrology for Additive Manufacturing Devices
Additive Manufacturing (AM), as a revolutionary breakthrough in advanced manufacturing paradigms, leverages its unique layer-by-layer construction advantage to exhibit significant technological superiority in the fabrication of complex structural components for aerospace, biomedical, and other field...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Nanomaterials |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2079-4991/15/11/821 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Additive Manufacturing (AM), as a revolutionary breakthrough in advanced manufacturing paradigms, leverages its unique layer-by-layer construction advantage to exhibit significant technological superiority in the fabrication of complex structural components for aerospace, biomedical, and other fields. However, when addressing industrial-grade precision manufacturing requirements, key challenges such as the multi-scale characteristics of surface damage precursors, interference from background noise, and the scarcity of high-quality training samples severely constrain the intelligent transformation of AM quality monitoring systems. This study proposes an innovative microscopic polarization YOLOv11-LSF intelligent inspection framework, which establishes an automated non-destructive testing methodology for AM device micro-nano damage precursors through triple technological innovations, effectively breaking through existing technical bottlenecks. Firstly, a multi-scale perception module is constructed based on the Large Separable Kernel Attention mechanism, significantly enhancing the network’s feature detection capability in complex industrial scenarios. Secondly, the cross-level local network VoV-GSCSP module is designed utilizing GSConv and a one-time aggregation method, resulting in a Slim-neck architecture that significantly reduces model complexity without compromising accuracy. Thirdly, an innovative simulation strategy incorporating physical features for damage precursors is proposed, constructing a virtual and real integrated training sample library and breaking away from traditional deep learning reliance on large-scale labeled data. Experimental results demonstrate that compared to the baseline model, the accuracy (P) of the YOLOv11-LSF model is increased by 1.6%, recall (R) by 1.6%, mAP50 by 1.5%, and mAP50-95 by 2.8%. The model hits an impressive detection accuracy of 99% for porosity-related micro-nano damage precursors and remains at 94% for cracks. Its unique small sample adaptation capability and robustness under complex conditions provide a reliable technical solution for industrial-grade AM quality monitoring. This research advances smart manufacturing quality innovation and enables cross-scale micro-nano damage inspection in advanced manufacturing. |
|---|---|
| ISSN: | 2079-4991 |