Spray-Drying Synthesis of Na<sub>4</sub>Fe<sub>3</sub>(PO4)<sub>2</sub>P<sub>2</sub>O<sub>7</sub>@CNT Cathode for Ultra-Stable and High-Rate Sodium-Ion Batteries
Iron-based phosphate is a promising cathode for sodium-ion batteries due to its low cost and abundant resources; however, the practical application is hindered by poor electronic conductivity, sluggish Na<sup>+</sup> diffusion, and a lack of low-cost and scalable synthesis methods. To ad...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-02-01
|
| Series: | Molecules |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1420-3049/30/3/753 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Iron-based phosphate is a promising cathode for sodium-ion batteries due to its low cost and abundant resources; however, the practical application is hindered by poor electronic conductivity, sluggish Na<sup>+</sup> diffusion, and a lack of low-cost and scalable synthesis methods. To address such issues, herein, we present a low-cost and scalable spray-drying strategy to synthesize Na<sub>4</sub>Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub>@CNT (NFPP@CNT) hollow microspheres. The NFPP@CNT composite has the following advantages: highly conductive CNT can significantly improve the electronic conductivity of the cathode, and the flexible CNT-based microsphere architecture facilitates Na<sup>+</sup> diffusion and guarantees excellent mechanical properties to mitigate structural degradation during cycling. These merits make the NFPP@CNT cathode display outstanding electrochemical performances: the NFPP@CNT-1% electrode demonstrates a high reversible capacity of 103.9 mAh g<sup>−1</sup> at 0.1 C and maintains a very high capacity retention of 99.9% after 1000 cycles even at a high rate of 5 C. |
|---|---|
| ISSN: | 1420-3049 |