Spatio-Temporal Collaborative Perception-Enabled Fault Feature Graph Construction and Topology Mining for Variable Operating Conditions Diagnosis

Industrial equipment fault diagnosis faces dual challenges: significant data distribution discrepancies caused by diverse operating conditions impair generalization capabilities, while underutilized spatio-temporal information from multi-source data hinders feature extraction. To address this, we pr...

Full description

Saved in:
Bibliographic Details
Main Authors: Jiaxin Zhao, Xing Wu, Chang Liu, Feifei He
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/15/4664
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Industrial equipment fault diagnosis faces dual challenges: significant data distribution discrepancies caused by diverse operating conditions impair generalization capabilities, while underutilized spatio-temporal information from multi-source data hinders feature extraction. To address this, we propose a spatio-temporal collaborative perception-driven feature graph construction and topology mining methodology for variable-condition diagnosis. First, leveraging the operational condition invariance and cross-condition consistency of fault features, we construct fault feature graphs using single-source data and similarity clustering, validating topological similarity and representational consistency under varying conditions. Second, we reveal spatio-temporal correlations within multi-source feature topologies. By embedding multi-source spatio-temporal information into fault feature graphs via spatio-temporal collaborative perception, we establish high-dimensional spatio-temporal feature topology graphs based on spectral similarity, extending generalized feature representations into the spatio-temporal domain. Finally, we develop a graph residual convolutional network to mine topological information from multi-source spatio-temporal features under complex operating conditions. Experiments on variable/multi-condition datasets demonstrate the following: feature graphs seamlessly integrate multi-source information with operational variations; the methodology precisely captures spatio-temporal delays induced by vibrational direction/path discrepancies; and the proposed model maintains both high diagnostic accuracy and strong generalization capacity under complex operating conditions, delivering a highly reliable framework for rotating machinery fault diagnosis.
ISSN:1424-8220