Recovery of Implied Volatility in a Spatial-Fractional Black–Scholes Equation Under a Finite Moment Log Stable Model

In this paper, we study direct and inverse problems for a spatial-fractional Black–Scholes equation with space-dependent volatility. For the direct problem, we provide CN-WSGD (Crank–Nicholson and the weighted and shifted Grünwald difference) scheme to solve the initial boundary value problem. The l...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaoying Jiang, Chunmei Shi, Yujie Wei
Format: Article
Language:English
Published: MDPI AG 2025-08-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/15/2480
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we study direct and inverse problems for a spatial-fractional Black–Scholes equation with space-dependent volatility. For the direct problem, we provide CN-WSGD (Crank–Nicholson and the weighted and shifted Grünwald difference) scheme to solve the initial boundary value problem. The latter aims to recover the implied volatility via observable option prices. Using a linearization technique, we rigorously derive a mathematical formulation of the inverse problem in terms of a Fredholm integral equation of the first kind. Based on an integral equation, an efficient numerical reconstruction algorithm is proposed to recover the coefficient. Numerical results for both problems are provided to illustrate the validity and effectiveness of proposed methods.
ISSN:2227-7390