Fixed-Time Adaptive Event-Triggered Control for Uncertain Nonlinear Systems Under Full-State Constraints

The problem of adaptive event-triggered control for uncertain nonlinear systems with full-state constraints was investigated. State constraints can significantly affect system performance, especially when time-varying external disturbances are present, potentially leading to instability. Thus, a fix...

Full description

Saved in:
Bibliographic Details
Main Authors: Yue Zhang, Jietao Dai, Zhenzhang Liu, Ruizhi Tang, Guoxiong Zheng, Jianhui Wang
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Actuators
Subjects:
Online Access:https://www.mdpi.com/2076-0825/14/5/231
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The problem of adaptive event-triggered control for uncertain nonlinear systems with full-state constraints was investigated. State constraints can significantly affect system performance, especially when time-varying external disturbances are present, potentially leading to instability. Thus, a fixed-time disturbance observer was designed. It estimated unknown uncertainties within a predetermined time. Meanwhile, an asymmetric barrier Lyapunov function was developed. It ensured the stability of the system state under constraints. Furthermore, to reduce the utilization rate of the system’s communication resources, an adaptive event-triggered control scheme was proposed, and an integrated control method was established to preset the convergence time of the system’s state error, greatly improving the convergence speed. Theoretical analysis and simulations demonstrated the effectiveness of the proposed approach. The results show that the system achieved stable control within a fixed time, even under full-state constraints and external disturbances, while using fewer communication resources.
ISSN:2076-0825