Divide-and-conquer routing for learning heterogeneous individualized capsules.

Capsule Networks (CapsNets) have demonstrated an enhanced ability to capture spatial relationships and preserve hierarchical feature representations compared to Convolutional Neural Networks (CNNs). However, the dynamic routing mechanism in CapsNets introduces substantial computational costs and lim...

Full description

Saved in:
Bibliographic Details
Main Authors: Hailei Yuan, Qiang Ren
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2025-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0329202
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Capsule Networks (CapsNets) have demonstrated an enhanced ability to capture spatial relationships and preserve hierarchical feature representations compared to Convolutional Neural Networks (CNNs). However, the dynamic routing mechanism in CapsNets introduces substantial computational costs and limits scalability. In this paper, we propose a divide-and-conquer routing algorithm that groups primary capsules, enabling the model to leverage independent feature subspaces for more precise and efficient feature learning. By partitioning the primary capsules, the initialization of coupling coefficients is aligned with the hierarchical structure of the capsules, addressing the limitations of existing initialization strategies that either disrupt feature aggregation or lead to excessively small activation values. Additionally, the grouped routing mechanism simplifies the iterative process, reducing computational overhead and improving scalability. Extensive experiments on benchmark image classification datasets demonstrate that our approach consistently outperforms the original dynamic routing algorithm as well as other state-of-the-art routing strategies, resulting in improved feature learning and classification accuracy. Our code is available at: https://github.com/rqfzpy/DC-CapsNet.
ISSN:1932-6203