Characterization of Lipschitz Spaces via Commutators of Maximal Function on the p-Adic Vector Space

In this paper, we give characterization of a p-adic version of Lipschitz spaces in terms of the boundedness of commutators of maximal function in the context of the p-adic version of Lebesgue spaces and Morrey spaces, where the symbols of the commutators belong to the Lipschitz spaces. A useful tool...

Full description

Saved in:
Bibliographic Details
Main Authors: Qianjun He, Xiang Li
Format: Article
Language:English
Published: Wiley 2022-01-01
Series:Journal of Mathematics
Online Access:http://dx.doi.org/10.1155/2022/7430272
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850159628555386880
author Qianjun He
Xiang Li
author_facet Qianjun He
Xiang Li
author_sort Qianjun He
collection DOAJ
description In this paper, we give characterization of a p-adic version of Lipschitz spaces in terms of the boundedness of commutators of maximal function in the context of the p-adic version of Lebesgue spaces and Morrey spaces, where the symbols of the commutators belong to the Lipschitz spaces. A useful tool is a Lipschitz norm involving the John-Nirenberg-type inequality for homogeneous Lipschitz functions, which is new in the p-adic field context.
format Article
id doaj-art-b940d471b3a540ee83b2e4cf9b763d99
institution OA Journals
issn 2314-4785
language English
publishDate 2022-01-01
publisher Wiley
record_format Article
series Journal of Mathematics
spelling doaj-art-b940d471b3a540ee83b2e4cf9b763d992025-08-20T02:23:27ZengWileyJournal of Mathematics2314-47852022-01-01202210.1155/2022/7430272Characterization of Lipschitz Spaces via Commutators of Maximal Function on the p-Adic Vector SpaceQianjun He0Xiang Li1School of Applied ScienceSchool of ScienceIn this paper, we give characterization of a p-adic version of Lipschitz spaces in terms of the boundedness of commutators of maximal function in the context of the p-adic version of Lebesgue spaces and Morrey spaces, where the symbols of the commutators belong to the Lipschitz spaces. A useful tool is a Lipschitz norm involving the John-Nirenberg-type inequality for homogeneous Lipschitz functions, which is new in the p-adic field context.http://dx.doi.org/10.1155/2022/7430272
spellingShingle Qianjun He
Xiang Li
Characterization of Lipschitz Spaces via Commutators of Maximal Function on the p-Adic Vector Space
Journal of Mathematics
title Characterization of Lipschitz Spaces via Commutators of Maximal Function on the p-Adic Vector Space
title_full Characterization of Lipschitz Spaces via Commutators of Maximal Function on the p-Adic Vector Space
title_fullStr Characterization of Lipschitz Spaces via Commutators of Maximal Function on the p-Adic Vector Space
title_full_unstemmed Characterization of Lipschitz Spaces via Commutators of Maximal Function on the p-Adic Vector Space
title_short Characterization of Lipschitz Spaces via Commutators of Maximal Function on the p-Adic Vector Space
title_sort characterization of lipschitz spaces via commutators of maximal function on the p adic vector space
url http://dx.doi.org/10.1155/2022/7430272
work_keys_str_mv AT qianjunhe characterizationoflipschitzspacesviacommutatorsofmaximalfunctiononthepadicvectorspace
AT xiangli characterizationoflipschitzspacesviacommutatorsofmaximalfunctiononthepadicvectorspace