ProT-GFDM: A generative fractional diffusion model for protein generation
This work introduces the generative fractional diffusion model for protein generation (ProT-GFDM), a novel generative framework that employs fractional stochastic dynamics for protein backbone structure modeling. This approach builds on the continuous-time score-based generative diffusion modeling p...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2025-01-01
|
| Series: | Computational and Structural Biotechnology Journal |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2001037025003101 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This work introduces the generative fractional diffusion model for protein generation (ProT-GFDM), a novel generative framework that employs fractional stochastic dynamics for protein backbone structure modeling. This approach builds on the continuous-time score-based generative diffusion modeling paradigm, where data are progressively transformed into noise via a stochastic differential equation and reversed to generate structured samples. Unlike classical methods that rely on standard Brownian motion, ProT-GFDM employs a fractional stochastic process with superdiffusive properties to improve the capture of long-range dependencies in protein structures. By integrating fractional dynamics with computationally efficient sampling, the proposed framework advances generative modeling for structured biological data, with implications for protein design and computational drug discovery. |
|---|---|
| ISSN: | 2001-0370 |