Data Privacy in the Internet of Things: A Perspective of Personal Data Store-Based Approaches
Data generated by Internet of Things devices enable the design of new business models and services, improving user experience and satisfaction. This data also serve as an essential information source for many fields, including disaster management, bio-surveillance, smart cities, and smart health. Ho...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Journal of Cybersecurity and Privacy |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2624-800X/5/2/25 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Data generated by Internet of Things devices enable the design of new business models and services, improving user experience and satisfaction. This data also serve as an essential information source for many fields, including disaster management, bio-surveillance, smart cities, and smart health. However, personal data are also collected in this context, introducing new challenges concerning data privacy protection, such as profiling, localization and tracking, linkage, and identification. This dilemma is further complicated by the “privacy paradox”, where users compromise privacy for service convenience. Hence, this paper reviews the literature on data privacy in the IoT, particularly emphasizing Personal Data Store (PDS)-based approaches as a promising class of user-centric solutions. PDS represents a user-centric approach to decentralizing data management, enhancing privacy by granting individuals control over their data. Addressing privacy solutions involves a triad of user privacy awareness, technology support, and ways to regulate data processing. Our discussion aims to advance the understanding of IoT privacy issues while emphasizing the potential of PDS to balance privacy protection and service delivery. |
|---|---|
| ISSN: | 2624-800X |