Machine Learning Meets Communication Networks: Current Trends and Future Challenges

The growing network density and unprecedented increase in network traffic, caused by the massively expanding number of connected devices and online services, require intelligent network operations. Machine Learning (ML) has been applied in this regard in different types of networks and networking te...

Full description

Saved in:
Bibliographic Details
Main Authors: Ijaz Ahmad, Shariar Shahabuddin, Hassan Malik, Erkki Harjula, Teemu Leppanen, Lauri Loven, Antti Anttonen, Ali Hassan Sodhro, Muhammad Mahtab Alam, Markku Juntti, Antti Yla-Jaaski, Thilo Sauter, Andrei Gurtov, Mika Ylianttila, Jukka Riekki
Format: Article
Language:English
Published: IEEE 2020-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9274307/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850185106829869056
author Ijaz Ahmad
Shariar Shahabuddin
Hassan Malik
Erkki Harjula
Teemu Leppanen
Lauri Loven
Antti Anttonen
Ali Hassan Sodhro
Muhammad Mahtab Alam
Markku Juntti
Antti Yla-Jaaski
Thilo Sauter
Andrei Gurtov
Mika Ylianttila
Jukka Riekki
author_facet Ijaz Ahmad
Shariar Shahabuddin
Hassan Malik
Erkki Harjula
Teemu Leppanen
Lauri Loven
Antti Anttonen
Ali Hassan Sodhro
Muhammad Mahtab Alam
Markku Juntti
Antti Yla-Jaaski
Thilo Sauter
Andrei Gurtov
Mika Ylianttila
Jukka Riekki
author_sort Ijaz Ahmad
collection DOAJ
description The growing network density and unprecedented increase in network traffic, caused by the massively expanding number of connected devices and online services, require intelligent network operations. Machine Learning (ML) has been applied in this regard in different types of networks and networking technologies to meet the requirements of future communicating devices and services. In this article, we provide a detailed account of current research on the application of ML in communication networks and shed light on future research challenges. Research on the application of ML in communication networks is described in: i) the three layers, i.e., physical, access, and network layers; and ii) novel computing and networking concepts such as Multi-access Edge Computing (MEC), Software Defined Networking (SDN), Network Functions Virtualization (NFV), and a brief overview of ML-based network security. Important future research challenges are identified and presented to help stir further research in key areas in this direction.
format Article
id doaj-art-b8ac991212e542e99c213cae584c4baa
institution OA Journals
issn 2169-3536
language English
publishDate 2020-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj-art-b8ac991212e542e99c213cae584c4baa2025-08-20T02:16:49ZengIEEEIEEE Access2169-35362020-01-01822341822346010.1109/ACCESS.2020.30417659274307Machine Learning Meets Communication Networks: Current Trends and Future ChallengesIjaz Ahmad0https://orcid.org/0000-0003-1101-8698Shariar Shahabuddin1https://orcid.org/0000-0002-7006-0928Hassan Malik2https://orcid.org/0000-0002-8564-3683Erkki Harjula3https://orcid.org/0000-0001-5331-209XTeemu Leppanen4https://orcid.org/0000-0002-3513-6106Lauri Loven5https://orcid.org/0000-0001-9475-4839Antti Anttonen6https://orcid.org/0000-0002-0575-9409Ali Hassan Sodhro7https://orcid.org/0000-0001-5502-530XMuhammad Mahtab Alam8https://orcid.org/0000-0002-1055-7959Markku Juntti9https://orcid.org/0000-0002-5413-1896Antti Yla-Jaaski10https://orcid.org/0000-0002-2069-1721Thilo Sauter11https://orcid.org/0000-0003-1559-8394Andrei Gurtov12https://orcid.org/0000-0002-9829-9287Mika Ylianttila13https://orcid.org/0000-0002-8079-5514Jukka Riekki14https://orcid.org/0000-0002-1694-9152VTT Technical Research Centre of Finland, Espoo, FinlandNokia, Nokia, FinlandComputer Science Department, Edge Hill University, Ormskirk, U.K.Centre for Wireless Communications, University of Oulu, Oulu, FinlandCenter for Ubiquitous Computing, University of Oulu, Oulu, FinlandCenter for Ubiquitous Computing, University of Oulu, Oulu, FinlandVTT Technical Research Centre of Finland, Espoo, FinlandDepartment of Computer and System Science, Mid-Sweden University, Östersund, SwedenThomas Johann Seebeck Department of Electronics, Tallinn University of Technology, Tallinn, EstoniaCentre for Wireless Communications, University of Oulu, Oulu, FinlandDepartment of Computer Science, Aalto University, Espoo, FinlandInstitute of Computer Technology, TU Wien, Wien, AustriaDepartment of Computer and Information Science, Linköping University, Linköping, SwedenCentre for Wireless Communications, University of Oulu, Oulu, FinlandCenter for Ubiquitous Computing, University of Oulu, Oulu, FinlandThe growing network density and unprecedented increase in network traffic, caused by the massively expanding number of connected devices and online services, require intelligent network operations. Machine Learning (ML) has been applied in this regard in different types of networks and networking technologies to meet the requirements of future communicating devices and services. In this article, we provide a detailed account of current research on the application of ML in communication networks and shed light on future research challenges. Research on the application of ML in communication networks is described in: i) the three layers, i.e., physical, access, and network layers; and ii) novel computing and networking concepts such as Multi-access Edge Computing (MEC), Software Defined Networking (SDN), Network Functions Virtualization (NFV), and a brief overview of ML-based network security. Important future research challenges are identified and presented to help stir further research in key areas in this direction.https://ieeexplore.ieee.org/document/9274307/Communication networksmachine learningphysical layerMAC layernetwork layerSDN
spellingShingle Ijaz Ahmad
Shariar Shahabuddin
Hassan Malik
Erkki Harjula
Teemu Leppanen
Lauri Loven
Antti Anttonen
Ali Hassan Sodhro
Muhammad Mahtab Alam
Markku Juntti
Antti Yla-Jaaski
Thilo Sauter
Andrei Gurtov
Mika Ylianttila
Jukka Riekki
Machine Learning Meets Communication Networks: Current Trends and Future Challenges
IEEE Access
Communication networks
machine learning
physical layer
MAC layer
network layer
SDN
title Machine Learning Meets Communication Networks: Current Trends and Future Challenges
title_full Machine Learning Meets Communication Networks: Current Trends and Future Challenges
title_fullStr Machine Learning Meets Communication Networks: Current Trends and Future Challenges
title_full_unstemmed Machine Learning Meets Communication Networks: Current Trends and Future Challenges
title_short Machine Learning Meets Communication Networks: Current Trends and Future Challenges
title_sort machine learning meets communication networks current trends and future challenges
topic Communication networks
machine learning
physical layer
MAC layer
network layer
SDN
url https://ieeexplore.ieee.org/document/9274307/
work_keys_str_mv AT ijazahmad machinelearningmeetscommunicationnetworkscurrenttrendsandfuturechallenges
AT shariarshahabuddin machinelearningmeetscommunicationnetworkscurrenttrendsandfuturechallenges
AT hassanmalik machinelearningmeetscommunicationnetworkscurrenttrendsandfuturechallenges
AT erkkiharjula machinelearningmeetscommunicationnetworkscurrenttrendsandfuturechallenges
AT teemuleppanen machinelearningmeetscommunicationnetworkscurrenttrendsandfuturechallenges
AT lauriloven machinelearningmeetscommunicationnetworkscurrenttrendsandfuturechallenges
AT anttianttonen machinelearningmeetscommunicationnetworkscurrenttrendsandfuturechallenges
AT alihassansodhro machinelearningmeetscommunicationnetworkscurrenttrendsandfuturechallenges
AT muhammadmahtabalam machinelearningmeetscommunicationnetworkscurrenttrendsandfuturechallenges
AT markkujuntti machinelearningmeetscommunicationnetworkscurrenttrendsandfuturechallenges
AT anttiylajaaski machinelearningmeetscommunicationnetworkscurrenttrendsandfuturechallenges
AT thilosauter machinelearningmeetscommunicationnetworkscurrenttrendsandfuturechallenges
AT andreigurtov machinelearningmeetscommunicationnetworkscurrenttrendsandfuturechallenges
AT mikaylianttila machinelearningmeetscommunicationnetworkscurrenttrendsandfuturechallenges
AT jukkariekki machinelearningmeetscommunicationnetworkscurrenttrendsandfuturechallenges