Comprehensive Electromechanical Analysis of High-Temperature Low-Sag (HTLS) Conductors
The rising energy consumption in transmission networks has markedly increased the burden on transmission lines, necessitating an expansion in their capacity to accommodate this surge. Consequently, high-temperature low-sag (HTLS) conductors are emerging as substitutes for conventional conductors in...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
IEEE
2025-01-01
|
| Series: | IEEE Access |
| Subjects: | |
| Online Access: | https://ieeexplore.ieee.org/document/11121868/ |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849228535201267712 |
|---|---|
| author | Jesus E. Guevara Asorza Jaimis S. L. Colqui Jose Pissolato Filho |
| author_facet | Jesus E. Guevara Asorza Jaimis S. L. Colqui Jose Pissolato Filho |
| author_sort | Jesus E. Guevara Asorza |
| collection | DOAJ |
| description | The rising energy consumption in transmission networks has markedly increased the burden on transmission lines, necessitating an expansion in their capacity to accommodate this surge. Consequently, high-temperature low-sag (HTLS) conductors are emerging as substitutes for conventional conductors in recent network upgrades due to their superior power transmission capabilities, especially under elevated temperatures. This paper critically analyzes the feasibility of adopting HTLS conductors over conventional counterparts for future single-circuit overhead transmission lines. Specifically, we evaluate leading HTLS conductors, such as ACCC and ZTACIR, against the conventional AAAC conductor. Following a two-stage methodology, this study presents a comprehensive electromechanical assessment of overhead transmission line. First, ampacity calculations were performed to determine the required conductor cross-sections. Subsequently, mechanical performance was evaluated to quantify structural loads and their impact on tower design. Among the HTLS conductors analyzed, the ACCC exhibited the lowest mechanical loads, indicating a better performance in terms of structural efficiency. ACCC and ZTACIR conductors significantly reduced the weight imposed on transmission towers compared to conventional AAAC, primarily due to their lower tensile forces. Furthermore, our results demonstrate that HTLS conductors present nearly identical electrical parameters across a broad frequency spectrum, conversely to the more variable behavior of conventional alternatives. Based on these results, ACCC conductors are strongly recommended for future projects, pending detailed economic analysis. |
| format | Article |
| id | doaj-art-b8a93f8d621e4ce3955c059e4de56d7d |
| institution | Kabale University |
| issn | 2169-3536 |
| language | English |
| publishDate | 2025-01-01 |
| publisher | IEEE |
| record_format | Article |
| series | IEEE Access |
| spelling | doaj-art-b8a93f8d621e4ce3955c059e4de56d7d2025-08-22T23:15:47ZengIEEEIEEE Access2169-35362025-01-011314153614154610.1109/ACCESS.2025.359753511121868Comprehensive Electromechanical Analysis of High-Temperature Low-Sag (HTLS) ConductorsJesus E. Guevara Asorza0https://orcid.org/0009-0008-5422-8533Jaimis S. L. Colqui1https://orcid.org/0000-0001-5095-7298Jose Pissolato Filho2https://orcid.org/0000-0002-7932-3974School of Electrical and Computer Engineering, University of Campinas, Campinas, BrazilSchool of Electrical and Computer Engineering, University of Campinas, Campinas, BrazilSchool of Electrical and Computer Engineering, University of Campinas, Campinas, BrazilThe rising energy consumption in transmission networks has markedly increased the burden on transmission lines, necessitating an expansion in their capacity to accommodate this surge. Consequently, high-temperature low-sag (HTLS) conductors are emerging as substitutes for conventional conductors in recent network upgrades due to their superior power transmission capabilities, especially under elevated temperatures. This paper critically analyzes the feasibility of adopting HTLS conductors over conventional counterparts for future single-circuit overhead transmission lines. Specifically, we evaluate leading HTLS conductors, such as ACCC and ZTACIR, against the conventional AAAC conductor. Following a two-stage methodology, this study presents a comprehensive electromechanical assessment of overhead transmission line. First, ampacity calculations were performed to determine the required conductor cross-sections. Subsequently, mechanical performance was evaluated to quantify structural loads and their impact on tower design. Among the HTLS conductors analyzed, the ACCC exhibited the lowest mechanical loads, indicating a better performance in terms of structural efficiency. ACCC and ZTACIR conductors significantly reduced the weight imposed on transmission towers compared to conventional AAAC, primarily due to their lower tensile forces. Furthermore, our results demonstrate that HTLS conductors present nearly identical electrical parameters across a broad frequency spectrum, conversely to the more variable behavior of conventional alternatives. Based on these results, ACCC conductors are strongly recommended for future projects, pending detailed economic analysis.https://ieeexplore.ieee.org/document/11121868/HTLS conductorsoverhead transmission linePLS-CADDampacitymechanical loadsline parameters |
| spellingShingle | Jesus E. Guevara Asorza Jaimis S. L. Colqui Jose Pissolato Filho Comprehensive Electromechanical Analysis of High-Temperature Low-Sag (HTLS) Conductors IEEE Access HTLS conductors overhead transmission line PLS-CADD ampacity mechanical loads line parameters |
| title | Comprehensive Electromechanical Analysis of High-Temperature Low-Sag (HTLS) Conductors |
| title_full | Comprehensive Electromechanical Analysis of High-Temperature Low-Sag (HTLS) Conductors |
| title_fullStr | Comprehensive Electromechanical Analysis of High-Temperature Low-Sag (HTLS) Conductors |
| title_full_unstemmed | Comprehensive Electromechanical Analysis of High-Temperature Low-Sag (HTLS) Conductors |
| title_short | Comprehensive Electromechanical Analysis of High-Temperature Low-Sag (HTLS) Conductors |
| title_sort | comprehensive electromechanical analysis of high temperature low sag htls conductors |
| topic | HTLS conductors overhead transmission line PLS-CADD ampacity mechanical loads line parameters |
| url | https://ieeexplore.ieee.org/document/11121868/ |
| work_keys_str_mv | AT jesuseguevaraasorza comprehensiveelectromechanicalanalysisofhightemperaturelowsaghtlsconductors AT jaimisslcolqui comprehensiveelectromechanicalanalysisofhightemperaturelowsaghtlsconductors AT josepissolatofilho comprehensiveelectromechanicalanalysisofhightemperaturelowsaghtlsconductors |