Mechanism Modeling and Analysis of Fractional-Order Synchronous Generator

This paper investigates the fractional-order characteristics of the stator and rotor windings of a synchronous generator. Utilizing mechanism-based modeling methodology, it pioneers the derivation of the fractional-order voltage equations for a synchronous generator across both the three-phase stati...

Full description

Saved in:
Bibliographic Details
Main Authors: Junhua Xu, Zheng Gong, Xiaocong Li, Songqin Tang, Chunwei Wang, Yue Lan
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/9/4/244
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper investigates the fractional-order characteristics of the stator and rotor windings of a synchronous generator. Utilizing mechanism-based modeling methodology, it pioneers the derivation of the fractional-order voltage equations for a synchronous generator across both the three-phase stationary coordinate system (A, B, C) and the synchronous rotating coordinate system (d, q, 0). Through simplifying assumptions and rigorous derivations, a 2 + <i>α</i> (<i>α</i> ∈ (0, 2)) order synchronous generator model is formulated. This paper develops a digital simulation model of a fractional-order single-machine infinite bus system and analyzes the impact of the order α on the synchronous generator system’s dynamic performance through disturbance simulation experiments. Experimental results demonstrate that under conventional disturbances, increasing α from 0.8 to 1.2 reduces the system oscillation period and frequency while enhancing mechanical oscillation suppression, whereas decreasing α to 0.8 accelerates the generator terminal voltage response, lowers electromagnetic power overshoot, and improves excitation control effectiveness.
ISSN:2504-3110