Assessment of 8-hydroxy-2-deoxyguanosine activity, apoptosis, acetylcholinesterase and antioxidant enzyme activity in Capoeta umbla brain exposed to chlorpyrifos

In this study, neurotoxic responses to exposure to chlorpyrifos (CPF) at different doses (55 and 110 μg l-1) and at different time intervals (24 and 96 h) were investigated in Siraz fish (Capoeta umbla) using 8-hydroxy 2-deoxyguanosine (8-OHdG) activity, caspase-3, acetylcholinesterase (AChE) and ox...

Full description

Saved in:
Bibliographic Details
Main Author: Kirici Mahinur
Format: Article
Language:English
Published: Sciendo 2022-06-01
Series:Oceanological and Hydrobiological Studies
Subjects:
Online Access:https://doi.org/10.26881/oandhs-2022.2.05
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832593640424210432
author Kirici Mahinur
author_facet Kirici Mahinur
author_sort Kirici Mahinur
collection DOAJ
description In this study, neurotoxic responses to exposure to chlorpyrifos (CPF) at different doses (55 and 110 μg l-1) and at different time intervals (24 and 96 h) were investigated in Siraz fish (Capoeta umbla) using 8-hydroxy 2-deoxyguanosine (8-OHdG) activity, caspase-3, acetylcholinesterase (AChE) and oxidative stress parameters [malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GR)]. In this study, the LC50 value of CPF was determined for the first time for C. umbla and calculated as 440 μg l-1. In this study, 12.5% (55 μg l-1) and 25% (110 μg l-1) of the LC50 value were used. The obtained data indicate a significant increase in the MDA level and inhibition of antioxidant enzymes in the brain (p < 0.05). Considering DNA damage and the apoptotic process, no significant changes were found in 8-OHdG and caspase-3 activity at both doses exposed for 24 h, but a significant increase was detected in both markers at 96 hours compared to the control group (p < 0.05). In the case of AChE activity, which is one of the neurotoxic markers in the brain, while inhibition was determined only at the high concentration (110 μg l-1) at the end of 24 hours, a decrease in enzyme activity was observed at the end of 96 hours in both concentration groups. In the light of all these results, we can say that CPF showed inhibitory effects on enzyme activity and inducing effects on MDA, caspase-3 and 8-OHdG levels. Based on these results, it can be concluded that CPF contributes to oxidative stress in fish and may have neurotoxic effects.
format Article
id doaj-art-b85e5123945a4f3fa778aa311a873cc5
institution Kabale University
issn 1897-3191
language English
publishDate 2022-06-01
publisher Sciendo
record_format Article
series Oceanological and Hydrobiological Studies
spelling doaj-art-b85e5123945a4f3fa778aa311a873cc52025-01-20T11:10:26ZengSciendoOceanological and Hydrobiological Studies1897-31912022-06-0151216717710.26881/oandhs-2022.2.05Assessment of 8-hydroxy-2-deoxyguanosine activity, apoptosis, acetylcholinesterase and antioxidant enzyme activity in Capoeta umbla brain exposed to chlorpyrifosKirici Mahinur0Department of Chemistry, Faculty of Arts and Science, Bingöl University, Bingöl, TurkeyIn this study, neurotoxic responses to exposure to chlorpyrifos (CPF) at different doses (55 and 110 μg l-1) and at different time intervals (24 and 96 h) were investigated in Siraz fish (Capoeta umbla) using 8-hydroxy 2-deoxyguanosine (8-OHdG) activity, caspase-3, acetylcholinesterase (AChE) and oxidative stress parameters [malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GR)]. In this study, the LC50 value of CPF was determined for the first time for C. umbla and calculated as 440 μg l-1. In this study, 12.5% (55 μg l-1) and 25% (110 μg l-1) of the LC50 value were used. The obtained data indicate a significant increase in the MDA level and inhibition of antioxidant enzymes in the brain (p < 0.05). Considering DNA damage and the apoptotic process, no significant changes were found in 8-OHdG and caspase-3 activity at both doses exposed for 24 h, but a significant increase was detected in both markers at 96 hours compared to the control group (p < 0.05). In the case of AChE activity, which is one of the neurotoxic markers in the brain, while inhibition was determined only at the high concentration (110 μg l-1) at the end of 24 hours, a decrease in enzyme activity was observed at the end of 96 hours in both concentration groups. In the light of all these results, we can say that CPF showed inhibitory effects on enzyme activity and inducing effects on MDA, caspase-3 and 8-OHdG levels. Based on these results, it can be concluded that CPF contributes to oxidative stress in fish and may have neurotoxic effects.https://doi.org/10.26881/oandhs-2022.2.05fishbrainneurotoxicitypesticidesapoptosistoxicity mechanism
spellingShingle Kirici Mahinur
Assessment of 8-hydroxy-2-deoxyguanosine activity, apoptosis, acetylcholinesterase and antioxidant enzyme activity in Capoeta umbla brain exposed to chlorpyrifos
Oceanological and Hydrobiological Studies
fish
brain
neurotoxicity
pesticides
apoptosis
toxicity mechanism
title Assessment of 8-hydroxy-2-deoxyguanosine activity, apoptosis, acetylcholinesterase and antioxidant enzyme activity in Capoeta umbla brain exposed to chlorpyrifos
title_full Assessment of 8-hydroxy-2-deoxyguanosine activity, apoptosis, acetylcholinesterase and antioxidant enzyme activity in Capoeta umbla brain exposed to chlorpyrifos
title_fullStr Assessment of 8-hydroxy-2-deoxyguanosine activity, apoptosis, acetylcholinesterase and antioxidant enzyme activity in Capoeta umbla brain exposed to chlorpyrifos
title_full_unstemmed Assessment of 8-hydroxy-2-deoxyguanosine activity, apoptosis, acetylcholinesterase and antioxidant enzyme activity in Capoeta umbla brain exposed to chlorpyrifos
title_short Assessment of 8-hydroxy-2-deoxyguanosine activity, apoptosis, acetylcholinesterase and antioxidant enzyme activity in Capoeta umbla brain exposed to chlorpyrifos
title_sort assessment of 8 hydroxy 2 deoxyguanosine activity apoptosis acetylcholinesterase and antioxidant enzyme activity in capoeta umbla brain exposed to chlorpyrifos
topic fish
brain
neurotoxicity
pesticides
apoptosis
toxicity mechanism
url https://doi.org/10.26881/oandhs-2022.2.05
work_keys_str_mv AT kiricimahinur assessmentof8hydroxy2deoxyguanosineactivityapoptosisacetylcholinesteraseandantioxidantenzymeactivityincapoetaumblabrainexposedtochlorpyrifos