PtWAVE: a high-sensitive deconvolution software of sequencing trace for the detection of large indels in genome editing

Abstract Background Tracking of Insertions and DEletions (TIDE) analysis, which computationally deconvolves capillary sequencing data derived from the DNA of bulk or clonal cell populations to estimate the efficiency of targeted mutagenesis by programmable nucleases, has played a significant role in...

Full description

Saved in:
Bibliographic Details
Main Authors: Kazuki Nakamae, Saya Ide, Nagaki Ohnuki, Yoshiko Nakagawa, Keisuke Okuhara, Hidemasa Bono
Format: Article
Language:English
Published: BMC 2025-04-01
Series:BMC Bioinformatics
Subjects:
Online Access:https://doi.org/10.1186/s12859-025-06139-8
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Background Tracking of Insertions and DEletions (TIDE) analysis, which computationally deconvolves capillary sequencing data derived from the DNA of bulk or clonal cell populations to estimate the efficiency of targeted mutagenesis by programmable nucleases, has played a significant role in the field of genome editing. However, the detection range covered by conventional TIDE analysis is limited. Range extension for deconvolution is required to detect larger deletions and insertions (indels) derived from genome editing in TIDE analysis. However, extending the deconvolution range introduces uncertainty into the deconvolution process. Moreover, the accuracy and sensitivity of TIDE analysis tools for large deletions (> 50 bp) remain poorly understood. Results In this study, we introduced a new software called PtWAVE that can detect a wide range of indel sizes, up to 200 bp. PtWAVE also offers options for variable selection and fitting algorithms to prevent uncertainties in the model. We evaluated the performance of PtWAVE by using in vitro capillary sequencing data that mimicked DNA sequencing, including large deletions. Furthermore, we confirmed that PtWAVE can stably analyze trace sequencing data derived from actual genome-edited samples. Conclusions PtWAVE demonstrated superior accuracy and sensitivity compared to the existing TIDE analysis tools for DNA samples, including large deletions. PtWAVE can accelerate genome editing applications in organisms and cell types in which large deletions often occur when programmable nucleases are applied.
ISSN:1471-2105