Security Enhancement in AAV Swarms: A Case Study Using Federated Learning and SHAP Analysis

As cyber-physical systems (CPSs) increasingly integrate physical and digital realms, securing critical infrastructure, such as the Port of Virginia, becomes paramount. Among CPSs, Autonomous Aerial Vehicles (AAVs) are vital for monitoring, communication, and supporting the command and control throug...

Full description

Saved in:
Bibliographic Details
Main Authors: Sushmitha Halli Sudhakara, Lida Haghnegahdar
Format: Article
Language:English
Published: IEEE 2025-01-01
Series:IEEE Open Journal of Intelligent Transportation Systems
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10924249/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As cyber-physical systems (CPSs) increasingly integrate physical and digital realms, securing critical infrastructure, such as the Port of Virginia, becomes paramount. Among CPSs, Autonomous Aerial Vehicles (AAVs) are vital for monitoring, communication, and supporting the command and control through remote reconnaissance and surveillance missions. These AAV applications often require coordination, planning, and runtime reconfiguration, traditionally managed by human decision-makers. However, this approach has limitations, as extensively documented in the literature. Artificial Intelligence (AI) has emerged as a pivotal tool to address these limitations, enhancing risk mitigation and informed decision-making. This research proposes a machine learning (ML) based security mechanism, leveraging federated learning and FedAvg for weight averaging, combined with SHAP analysis to identify key contributing features. This AI-based system requires less human intervention and is more effective in detecting novel attacks than traditional intrusion detection systems (IDS). Using the IEEE DataPort AAV Attack Dataset, this study aims to develop a robust distributed ML security solution for AAV swarms, significantly advancing the cybersecurity landscape for CPSs.
ISSN:2687-7813