Grape polyphenols reduce fasting glucose and increase hyocholic acid in healthy humans: a meta-omics study

Abstract Grape polyphenols (GPs) are rich in B-type proanthocyanidins, which promote metabolic resilience. Longitudinal metabolomic, metagenomic, and metaproteomic changes were measured in 27 healthy subjects supplemented with soy protein isolate (SPI, 40 g per day) for 5 days followed by GPs comple...

Full description

Saved in:
Bibliographic Details
Main Authors: Esther Mezhibovsky, Guojun Wu, Yue Wu, Zhibin Ning, Karen Bacalia, Sriya Sadangi, Riddhi Patel, Alexander Poulev, Rocio M. Duran, Marie Macor, Susette Coyle, Yan Y. Lam, Ilya Raskin, Daniel Figeys, Liping Zhao, Diana E. Roopchand
Format: Article
Language:English
Published: Nature Portfolio 2025-05-01
Series:npj Science of Food
Online Access:https://doi.org/10.1038/s41538-025-00443-6
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Grape polyphenols (GPs) are rich in B-type proanthocyanidins, which promote metabolic resilience. Longitudinal metabolomic, metagenomic, and metaproteomic changes were measured in 27 healthy subjects supplemented with soy protein isolate (SPI, 40 g per day) for 5 days followed by GPs complexed to SPI (GP-SPI standardized to 5% GPs, 40 g per day) for 10 days. Fecal, urine, and/or fasting blood samples were collected before supplementation (day –5), after 5 days of SPI (day 0), and after 2, 4 and 10 days of GP-SPI. Most multi-omic changes observed after 2 and/or 4 days of GP-SPI intake were temporary, returning to pre-supplementation profiles by day 10. Shotgun metagenomics sequencing provided insights that could not be captured with 16S rRNA amplicon sequencing. Notably, 10 days of GP-SPI decreased fasting blood glucose and increased serum hyocholic acid (HCA), a glucoregulatory bile acid, which negatively correlated with one gut bacterial guild. In conclusion, GP-induced suppression of a bacterial guild may lead to higher HCA and lower fasting blood glucose.
ISSN:2396-8370