The hit-and-run of cell wall synthesis: LpoB transiently binds and activates PBP1b through a conserved allosteric switch
Abstract The peptidoglycan (PG) cell wall is the primary protective layer of bacteria, making the process of PG synthesis a key antibiotic target. Class A penicillin-binding proteins (aPBPs) are a family of conserved and ubiquitous PG synthases that fortify and repair the PG matrix. In gram-negative...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-07-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-62051-y |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849234718466244608 |
|---|---|
| author | Irina Shlosman Andrea Vettiger Thomas G. Bernhardt Andrew C. Kruse Joseph J. Loparo |
| author_facet | Irina Shlosman Andrea Vettiger Thomas G. Bernhardt Andrew C. Kruse Joseph J. Loparo |
| author_sort | Irina Shlosman |
| collection | DOAJ |
| description | Abstract The peptidoglycan (PG) cell wall is the primary protective layer of bacteria, making the process of PG synthesis a key antibiotic target. Class A penicillin-binding proteins (aPBPs) are a family of conserved and ubiquitous PG synthases that fortify and repair the PG matrix. In gram-negative bacteria, these enzymes are regulated by outer-membrane tethered lipoproteins. However, the molecular mechanism by which lipoproteins coordinate the spatial recruitment and enzymatic activation of aPBPs remains unclear. Here we use single-molecule FRET and single-particle tracking in E. coli to show that a prototypical lipoprotein activator LpoB triggers site-specific PG synthesis by PBP1b through conformational rearrangements. Once synthesis is initiated, LpoB affinity for PBP1b dramatically decreases and it dissociates from the synthesizing enzyme. Our results suggest that transient allosteric coupling between PBP1b and LpoB directs PG synthesis to areas of low peptidoglycan density, while simultaneously facilitating efficient lipoprotein redistribution to other sites in need of fortification. |
| format | Article |
| id | doaj-art-b7d3e60183604eb7a216ec82f7042009 |
| institution | Kabale University |
| issn | 2041-1723 |
| language | English |
| publishDate | 2025-07-01 |
| publisher | Nature Portfolio |
| record_format | Article |
| series | Nature Communications |
| spelling | doaj-art-b7d3e60183604eb7a216ec82f70420092025-08-20T04:03:03ZengNature PortfolioNature Communications2041-17232025-07-0116111510.1038/s41467-025-62051-yThe hit-and-run of cell wall synthesis: LpoB transiently binds and activates PBP1b through a conserved allosteric switchIrina Shlosman0Andrea Vettiger1Thomas G. Bernhardt2Andrew C. Kruse3Joseph J. Loparo4Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical SchoolDepartment of Fundamental Microbiology, Université de LausanneDepartment of Microbiology, Blavatnik Institute, Harvard Medical SchoolDepartment of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical SchoolDepartment of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical SchoolAbstract The peptidoglycan (PG) cell wall is the primary protective layer of bacteria, making the process of PG synthesis a key antibiotic target. Class A penicillin-binding proteins (aPBPs) are a family of conserved and ubiquitous PG synthases that fortify and repair the PG matrix. In gram-negative bacteria, these enzymes are regulated by outer-membrane tethered lipoproteins. However, the molecular mechanism by which lipoproteins coordinate the spatial recruitment and enzymatic activation of aPBPs remains unclear. Here we use single-molecule FRET and single-particle tracking in E. coli to show that a prototypical lipoprotein activator LpoB triggers site-specific PG synthesis by PBP1b through conformational rearrangements. Once synthesis is initiated, LpoB affinity for PBP1b dramatically decreases and it dissociates from the synthesizing enzyme. Our results suggest that transient allosteric coupling between PBP1b and LpoB directs PG synthesis to areas of low peptidoglycan density, while simultaneously facilitating efficient lipoprotein redistribution to other sites in need of fortification.https://doi.org/10.1038/s41467-025-62051-y |
| spellingShingle | Irina Shlosman Andrea Vettiger Thomas G. Bernhardt Andrew C. Kruse Joseph J. Loparo The hit-and-run of cell wall synthesis: LpoB transiently binds and activates PBP1b through a conserved allosteric switch Nature Communications |
| title | The hit-and-run of cell wall synthesis: LpoB transiently binds and activates PBP1b through a conserved allosteric switch |
| title_full | The hit-and-run of cell wall synthesis: LpoB transiently binds and activates PBP1b through a conserved allosteric switch |
| title_fullStr | The hit-and-run of cell wall synthesis: LpoB transiently binds and activates PBP1b through a conserved allosteric switch |
| title_full_unstemmed | The hit-and-run of cell wall synthesis: LpoB transiently binds and activates PBP1b through a conserved allosteric switch |
| title_short | The hit-and-run of cell wall synthesis: LpoB transiently binds and activates PBP1b through a conserved allosteric switch |
| title_sort | hit and run of cell wall synthesis lpob transiently binds and activates pbp1b through a conserved allosteric switch |
| url | https://doi.org/10.1038/s41467-025-62051-y |
| work_keys_str_mv | AT irinashlosman thehitandrunofcellwallsynthesislpobtransientlybindsandactivatespbp1bthroughaconservedallostericswitch AT andreavettiger thehitandrunofcellwallsynthesislpobtransientlybindsandactivatespbp1bthroughaconservedallostericswitch AT thomasgbernhardt thehitandrunofcellwallsynthesislpobtransientlybindsandactivatespbp1bthroughaconservedallostericswitch AT andrewckruse thehitandrunofcellwallsynthesislpobtransientlybindsandactivatespbp1bthroughaconservedallostericswitch AT josephjloparo thehitandrunofcellwallsynthesislpobtransientlybindsandactivatespbp1bthroughaconservedallostericswitch AT irinashlosman hitandrunofcellwallsynthesislpobtransientlybindsandactivatespbp1bthroughaconservedallostericswitch AT andreavettiger hitandrunofcellwallsynthesislpobtransientlybindsandactivatespbp1bthroughaconservedallostericswitch AT thomasgbernhardt hitandrunofcellwallsynthesislpobtransientlybindsandactivatespbp1bthroughaconservedallostericswitch AT andrewckruse hitandrunofcellwallsynthesislpobtransientlybindsandactivatespbp1bthroughaconservedallostericswitch AT josephjloparo hitandrunofcellwallsynthesislpobtransientlybindsandactivatespbp1bthroughaconservedallostericswitch |