A method for benchmarking genetic screens reveals a predominant mitochondrial bias

Abstract We present FLEX (Functional evaluation of experimental perturbations), a pipeline that leverages several functional annotation resources to establish reference standards for benchmarking human genome‐wide CRISPR screen data and methods for analyzing them. FLEX provides a quantitative measur...

Full description

Saved in:
Bibliographic Details
Main Authors: Mahfuzur Rahman, Maximilian Billmann, Michael Costanzo, Michael Aregger, Amy H Y Tong, Katherine Chan, Henry N Ward, Kevin R Brown, Brenda J Andrews, Charles Boone, Jason Moffat, Chad L Myers
Format: Article
Language:English
Published: Springer Nature 2021-05-01
Series:Molecular Systems Biology
Subjects:
Online Access:https://doi.org/10.15252/msb.202010013
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850109773902512128
author Mahfuzur Rahman
Maximilian Billmann
Michael Costanzo
Michael Aregger
Amy H Y Tong
Katherine Chan
Henry N Ward
Kevin R Brown
Brenda J Andrews
Charles Boone
Jason Moffat
Chad L Myers
author_facet Mahfuzur Rahman
Maximilian Billmann
Michael Costanzo
Michael Aregger
Amy H Y Tong
Katherine Chan
Henry N Ward
Kevin R Brown
Brenda J Andrews
Charles Boone
Jason Moffat
Chad L Myers
author_sort Mahfuzur Rahman
collection DOAJ
description Abstract We present FLEX (Functional evaluation of experimental perturbations), a pipeline that leverages several functional annotation resources to establish reference standards for benchmarking human genome‐wide CRISPR screen data and methods for analyzing them. FLEX provides a quantitative measurement of the functional information captured by a given gene‐pair dataset and a means to explore the diversity of functions captured by the input dataset. We apply FLEX to analyze data from the diverse cell line screens generated by the DepMap project. We identify a predominant mitochondria‐associated signal within co‐essentiality networks derived from these data and explore the basis of this signal. Our analysis and time‐resolved CRISPR screens in a single cell line suggest that the variable phenotypes associated with mitochondria genes across cells may reflect screen dynamics and protein stability effects rather than genetic dependencies. We characterize this functional bias and demonstrate its relevance for interpreting differential hits in any CRISPR screening context. More generally, we demonstrate the utility of the FLEX pipeline for performing robust comparative evaluations of CRISPR screens or methods for processing them.
format Article
id doaj-art-b77f0c4de34540ad85f7efa1a9046e4b
institution OA Journals
issn 1744-4292
language English
publishDate 2021-05-01
publisher Springer Nature
record_format Article
series Molecular Systems Biology
spelling doaj-art-b77f0c4de34540ad85f7efa1a9046e4b2025-08-20T02:37:58ZengSpringer NatureMolecular Systems Biology1744-42922021-05-0117511210.15252/msb.202010013A method for benchmarking genetic screens reveals a predominant mitochondrial biasMahfuzur Rahman0Maximilian Billmann1Michael Costanzo2Michael Aregger3Amy H Y Tong4Katherine Chan5Henry N Ward6Kevin R Brown7Brenda J Andrews8Charles Boone9Jason Moffat10Chad L Myers11Department of Computer Science and Engineering, University of Minnesota – Twin CitiesDepartment of Computer Science and Engineering, University of Minnesota – Twin CitiesDonnelly Centre, University of TorontoDonnelly Centre, University of TorontoDonnelly Centre, University of TorontoDonnelly Centre, University of TorontoBioinformatics and Computational Biology Graduate Program, University of Minnesota – Twin CitiesDonnelly Centre, University of TorontoDonnelly Centre, University of TorontoDonnelly Centre, University of TorontoDonnelly Centre, University of TorontoDepartment of Computer Science and Engineering, University of Minnesota – Twin CitiesAbstract We present FLEX (Functional evaluation of experimental perturbations), a pipeline that leverages several functional annotation resources to establish reference standards for benchmarking human genome‐wide CRISPR screen data and methods for analyzing them. FLEX provides a quantitative measurement of the functional information captured by a given gene‐pair dataset and a means to explore the diversity of functions captured by the input dataset. We apply FLEX to analyze data from the diverse cell line screens generated by the DepMap project. We identify a predominant mitochondria‐associated signal within co‐essentiality networks derived from these data and explore the basis of this signal. Our analysis and time‐resolved CRISPR screens in a single cell line suggest that the variable phenotypes associated with mitochondria genes across cells may reflect screen dynamics and protein stability effects rather than genetic dependencies. We characterize this functional bias and demonstrate its relevance for interpreting differential hits in any CRISPR screening context. More generally, we demonstrate the utility of the FLEX pipeline for performing robust comparative evaluations of CRISPR screens or methods for processing them.https://doi.org/10.15252/msb.202010013computational evaluationCRISPR screenselectron transport chain
spellingShingle Mahfuzur Rahman
Maximilian Billmann
Michael Costanzo
Michael Aregger
Amy H Y Tong
Katherine Chan
Henry N Ward
Kevin R Brown
Brenda J Andrews
Charles Boone
Jason Moffat
Chad L Myers
A method for benchmarking genetic screens reveals a predominant mitochondrial bias
Molecular Systems Biology
computational evaluation
CRISPR screens
electron transport chain
title A method for benchmarking genetic screens reveals a predominant mitochondrial bias
title_full A method for benchmarking genetic screens reveals a predominant mitochondrial bias
title_fullStr A method for benchmarking genetic screens reveals a predominant mitochondrial bias
title_full_unstemmed A method for benchmarking genetic screens reveals a predominant mitochondrial bias
title_short A method for benchmarking genetic screens reveals a predominant mitochondrial bias
title_sort method for benchmarking genetic screens reveals a predominant mitochondrial bias
topic computational evaluation
CRISPR screens
electron transport chain
url https://doi.org/10.15252/msb.202010013
work_keys_str_mv AT mahfuzurrahman amethodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias
AT maximilianbillmann amethodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias
AT michaelcostanzo amethodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias
AT michaelaregger amethodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias
AT amyhytong amethodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias
AT katherinechan amethodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias
AT henrynward amethodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias
AT kevinrbrown amethodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias
AT brendajandrews amethodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias
AT charlesboone amethodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias
AT jasonmoffat amethodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias
AT chadlmyers amethodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias
AT mahfuzurrahman methodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias
AT maximilianbillmann methodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias
AT michaelcostanzo methodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias
AT michaelaregger methodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias
AT amyhytong methodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias
AT katherinechan methodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias
AT henrynward methodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias
AT kevinrbrown methodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias
AT brendajandrews methodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias
AT charlesboone methodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias
AT jasonmoffat methodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias
AT chadlmyers methodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias