Quasi-projective modules and the finite exchange property

We define a module M to be directly refinable if whenever M=A+B, there exists A¯⊆A and B¯⊆B such that M=A¯⊕B¯ . Theorem. Let M be a quasi-projective module. Then M is directly refinable if and only if M has the finite exchange property.

Saved in:
Bibliographic Details
Main Author: Gary F. Birkenmeier
Format: Article
Language:English
Published: Wiley 1989-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S0161171289001018
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850176152328470528
author Gary F. Birkenmeier
author_facet Gary F. Birkenmeier
author_sort Gary F. Birkenmeier
collection DOAJ
description We define a module M to be directly refinable if whenever M=A+B, there exists A¯⊆A and B¯⊆B such that M=A¯⊕B¯ . Theorem. Let M be a quasi-projective module. Then M is directly refinable if and only if M has the finite exchange property.
format Article
id doaj-art-b768e2fa267f476daffd9fb175037883
institution OA Journals
issn 0161-1712
1687-0425
language English
publishDate 1989-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-b768e2fa267f476daffd9fb1750378832025-08-20T02:19:19ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251989-01-0112482182210.1155/S0161171289001018Quasi-projective modules and the finite exchange propertyGary F. Birkenmeier0Department of Mathematics, University of Southwestern Louisiana, Lafayette 70504, Louisiana, USAWe define a module M to be directly refinable if whenever M=A+B, there exists A¯⊆A and B¯⊆B such that M=A¯⊕B¯ . Theorem. Let M be a quasi-projective module. Then M is directly refinable if and only if M has the finite exchange property.http://dx.doi.org/10.1155/S0161171289001018
spellingShingle Gary F. Birkenmeier
Quasi-projective modules and the finite exchange property
International Journal of Mathematics and Mathematical Sciences
title Quasi-projective modules and the finite exchange property
title_full Quasi-projective modules and the finite exchange property
title_fullStr Quasi-projective modules and the finite exchange property
title_full_unstemmed Quasi-projective modules and the finite exchange property
title_short Quasi-projective modules and the finite exchange property
title_sort quasi projective modules and the finite exchange property
url http://dx.doi.org/10.1155/S0161171289001018
work_keys_str_mv AT garyfbirkenmeier quasiprojectivemodulesandthefiniteexchangeproperty