Quasi-projective modules and the finite exchange property

We define a module M to be directly refinable if whenever M=A+B, there exists A¯⊆A and B¯⊆B such that M=A¯⊕B¯ . Theorem. Let M be a quasi-projective module. Then M is directly refinable if and only if M has the finite exchange property.

Saved in:
Bibliographic Details
Main Author: Gary F. Birkenmeier
Format: Article
Language:English
Published: Wiley 1989-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S0161171289001018
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We define a module M to be directly refinable if whenever M=A+B, there exists A¯⊆A and B¯⊆B such that M=A¯⊕B¯ . Theorem. Let M be a quasi-projective module. Then M is directly refinable if and only if M has the finite exchange property.
ISSN:0161-1712
1687-0425