Modelling of River-Groundwater Interactions under Rainfall Events Based on a Modified Tank Model
A multitank model experiment is employed to simulate the river-groundwater interaction under rainfall events. These experiments involve coarse and fine materials and rainfall events of 45 and 65 mm/hr. We developed a modified tank model for estimation of the groundwater table and river levels in the...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2017-01-01
|
| Series: | Geofluids |
| Online Access: | http://dx.doi.org/10.1155/2017/5192473 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | A multitank model experiment is employed to simulate the river-groundwater interaction under rainfall events. These experiments involve coarse and fine materials and rainfall events of 45 and 65 mm/hr. We developed a modified tank model for estimation of the groundwater table and river levels in these experiments. Parameter training of our tank model includes two algorithms: (i) the nonincremental learning algorithm-based model can predict the pore water pressure (PWP) in a slope and river under a 65 mm/hr rainfall event (coarse material) with Nash–Sutcliffe efficiency (NSE) = 0.427 and −0.909 and (ii) the incremental learning algorithm-based model can predict the PWP in a slope and river with NSE = 0.994 and 0.995. Then, the river-groundwater interaction was reproduced by a numerical case. The results of the deterministic method of the numerical case and optimized method of the modified tank model matched well. |
|---|---|
| ISSN: | 1468-8115 1468-8123 |