Direct calculation of effective mobile ion concentration in lithium superionic conductors
Abstract In the realm of lithium superionic conductors, pursuing higher ionic conductivity is imperative, with the variance in lithium-ion concentration playing a determining role. Due to the permanent and temporary site-blocking effects, especially at non-dilute concentrations, not all Li-ions cont...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-02-01
|
| Series: | npj Computational Materials |
| Online Access: | https://doi.org/10.1038/s41524-025-01516-6 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract In the realm of lithium superionic conductors, pursuing higher ionic conductivity is imperative, with the variance in lithium-ion concentration playing a determining role. Due to the permanent and temporary site-blocking effects, especially at non-dilute concentrations, not all Li-ions contribute to ionic conductivity. Here, we propose a strategy to directly calculate effective mobile ion concentration in which multiple-ion correlated migration is considered in the percolation analysis with the input of Li-ion distributions and hopping behavior based on kinetic Monte Carlo simulation, termed P-KMC. We provide examples of two representative lithium superionic conductors, cubic garnet-type Li x A 3 B 2O12 (0 ≤ x ≤ 9; A and B represent different cations) and perovskite-type Li x La2/3−x/3TiO3 (0 ≤ x ≤ 0.5), to demonstrate the direct dependence of the ionic conductivity on the effective mobile ion concentration. This methodology provides a robust tool to identify the optimal compositions for the highest ionic conductivity in superionic conductors. |
|---|---|
| ISSN: | 2057-3960 |