Direct calculation of effective mobile ion concentration in lithium superionic conductors

Abstract In the realm of lithium superionic conductors, pursuing higher ionic conductivity is imperative, with the variance in lithium-ion concentration playing a determining role. Due to the permanent and temporary site-blocking effects, especially at non-dilute concentrations, not all Li-ions cont...

Full description

Saved in:
Bibliographic Details
Main Authors: Bowei Pu, Zheyi Zou, Jinping Liu, Bing He, Dezhi Chen, Da Wang, Yue Liu, Maxim Avdeev, Siqi Shi
Format: Article
Language:English
Published: Nature Portfolio 2025-02-01
Series:npj Computational Materials
Online Access:https://doi.org/10.1038/s41524-025-01516-6
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract In the realm of lithium superionic conductors, pursuing higher ionic conductivity is imperative, with the variance in lithium-ion concentration playing a determining role. Due to the permanent and temporary site-blocking effects, especially at non-dilute concentrations, not all Li-ions contribute to ionic conductivity. Here, we propose a strategy to directly calculate effective mobile ion concentration in which multiple-ion correlated migration is considered in the percolation analysis with the input of Li-ion distributions and hopping behavior based on kinetic Monte Carlo simulation, termed P-KMC. We provide examples of two representative lithium superionic conductors, cubic garnet-type Li x A 3 B 2O12 (0 ≤ x ≤ 9; A and B represent different cations) and perovskite-type Li x La2/3−x/3TiO3 (0 ≤ x ≤ 0.5), to demonstrate the direct dependence of the ionic conductivity on the effective mobile ion concentration. This methodology provides a robust tool to identify the optimal compositions for the highest ionic conductivity in superionic conductors.
ISSN:2057-3960