Evaluation of Thermal Damage Effect of Forest Fire Based on Multispectral Camera Combined with Dual Annealing Algorithm

In recent years, the frequency and severity of large-scale forest fires have increased globally, threatening forest ecosystems, human lives, and property while potentially triggering cascading ecological and social crises. Despite significant advancements in remote sensing-based forest fire monitori...

Full description

Saved in:
Bibliographic Details
Main Authors: Pan Pei, Xiaojian Hao, Ziqi Wu, Rui Jia, Shenxiang Feng, Tong Wei, Wenxiang You, Chenyang Xu, Xining Wang, Yuqian Dong
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/10/5553
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In recent years, the frequency and severity of large-scale forest fires have increased globally, threatening forest ecosystems, human lives, and property while potentially triggering cascading ecological and social crises. Despite significant advancements in remote sensing-based forest fire monitoring, early warning systems, and fire risk zoning, post-fire thermal damage assessment remains insufficiently addressed. This study introduces an innovative approach combining multispectral imaging with a dual annealing constrained optimization algorithm to enable dynamic monitoring of fire temperature distribution. Based on this method, we develop a dynamic thermal damage assessment model to quantify thermal impacts during forest fires. The proposed model provides valuable insights for defining thermal damage zones, optimizing evacuation strategies, and supporting firefighting operations, ultimately enhancing emergency response and forest fire management efficiency.
ISSN:2076-3417