On a spike train probability model with interacting neural units

We investigate an extension of the spike train stochastic model based on the conditionalintensity, in which the recovery function includes an interaction between several excitatoryneural units. Such function is proposed as depending both on the time elapsed since thelast spike and on the last spikin...

Full description

Saved in:
Bibliographic Details
Main Authors: Antonio Di Crescenzo, Maria Longobardi, Barbara Martinucci
Format: Article
Language:English
Published: AIMS Press 2013-09-01
Series:Mathematical Biosciences and Engineering
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/mbe.2014.11.217
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate an extension of the spike train stochastic model based on the conditionalintensity, in which the recovery function includes an interaction between several excitatoryneural units. Such function is proposed as depending both on the time elapsed since thelast spike and on the last spiking unit. Our approach, being somewhat related to thecompeting risks model, allows to obtain the general form of the interspike distribution andof the probability of consecutive spikes from the same unit. Various results are finally presentedin the two cases when the free firing rate function (i) is constant, and (ii) has a sinusoidal form.
ISSN:1551-0018