Stability of Cauchy–Stieltjes Kernel Families by Free and Boolean Convolutions Product

Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="fraktur">F</mi><mrow><mo>(</mo><msub><mi>ν</mi><mi>j</mi></msub...

Full description

Saved in:
Bibliographic Details
Main Authors: Ayed. R. A. Alanzi, Shokrya S. Alshqaq, Raouf Fakhfakh
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/12/22/3465
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846153095527006208
author Ayed. R. A. Alanzi
Shokrya S. Alshqaq
Raouf Fakhfakh
author_facet Ayed. R. A. Alanzi
Shokrya S. Alshqaq
Raouf Fakhfakh
author_sort Ayed. R. A. Alanzi
collection DOAJ
description Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="fraktur">F</mi><mrow><mo>(</mo><msub><mi>ν</mi><mi>j</mi></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>{</mo><msubsup><mi>Q</mi><mrow><msub><mi>m</mi><mi>j</mi></msub></mrow><msub><mi>ν</mi><mi>j</mi></msub></msubsup><mo>,</mo><mspace width="4pt"></mspace><mspace width="4pt"></mspace><mspace width="4pt"></mspace><msub><mi>m</mi><mi>j</mi></msub><mo>∈</mo><mrow><mo>(</mo><msubsup><mi>m</mi><mo>−</mo><msub><mi>ν</mi><mi>j</mi></msub></msubsup><mo>,</mo><msubsup><mi>m</mi><mo>+</mo><msub><mi>ν</mi><mi>j</mi></msub></msubsup><mo>)</mo></mrow><mo>}</mo></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></mrow></semantics></math></inline-formula>, be two Cauchy–Stieltjes Kernel (CSK) families induced by non-degenerate compactly supported probability measures <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ν</mi><mn>1</mn></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ν</mi><mn>2</mn></msub></semantics></math></inline-formula>. Introduce the set of measures <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">F</mi><mo>=</mo><mi mathvariant="fraktur">F</mi><mrow><mo>(</mo><msub><mi>ν</mi><mn>1</mn></msub><mo>)</mo></mrow><mo>⊞</mo><mi mathvariant="fraktur">F</mi><mrow><mo>(</mo><msub><mi>ν</mi><mn>2</mn></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>{</mo><msubsup><mi>Q</mi><mrow><msub><mi>m</mi><mn>1</mn></msub></mrow><msub><mi>ν</mi><mn>1</mn></msub></msubsup><mo>⊞</mo><msubsup><mi>Q</mi><mrow><msub><mi>m</mi><mn>2</mn></msub></mrow><msub><mi>ν</mi><mn>2</mn></msub></msubsup><mo>,</mo><mspace width="4pt"></mspace><mspace width="4pt"></mspace><mspace width="4pt"></mspace><msub><mi>m</mi><mn>1</mn></msub><mo>∈</mo><mrow><mo>(</mo><msubsup><mi>m</mi><mo>−</mo><msub><mi>ν</mi><mn>1</mn></msub></msubsup><mo>,</mo><msubsup><mi>m</mi><mo>+</mo><msub><mi>ν</mi><mn>1</mn></msub></msubsup><mo>)</mo></mrow><mspace width="4pt"></mspace><mspace width="4pt"></mspace><mrow><mi>a</mi><mi>n</mi><mi>d</mi></mrow><mspace width="4pt"></mspace><mspace width="4pt"></mspace><msub><mi>m</mi><mn>2</mn></msub><mo>∈</mo><mrow><mo>(</mo><msubsup><mi>m</mi><mo>−</mo><msub><mi>ν</mi><mn>2</mn></msub></msubsup><mo>,</mo><msubsup><mi>m</mi><mo>+</mo><msub><mi>ν</mi><mn>2</mn></msub></msubsup><mo>)</mo></mrow><mo>}</mo></mrow><mo>.</mo></mrow></semantics></math></inline-formula> We show that if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">F</mi></semantics></math></inline-formula> remains a CSK family, (i.e., <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">F</mi><mo>=</mo><mi mathvariant="fraktur">F</mi><mo>(</mo><mi>μ</mi><mo>)</mo></mrow></semantics></math></inline-formula> where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>μ</mi></semantics></math></inline-formula> is a non-degenerate compactly supported measure), then the measures <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>μ</mi></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ν</mi><mn>1</mn></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ν</mi><mn>2</mn></msub></semantics></math></inline-formula> are of the Marchenko–Pastur type measure up to affinity. A similar conclusion is obtained if we substitute (in the definition of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">F</mi></semantics></math></inline-formula>) the additive free convolution ⊞ by the additive Boolean convolution ⊎. The cases where the additive free convolution ⊞ is replaced (in the definition of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">F</mi></semantics></math></inline-formula>) by the multiplicative free convolution ⊠ or the multiplicative Boolean convolution ⨃ are also studied.
format Article
id doaj-art-b6fec098339845668a9493bd6595ce7a
institution Kabale University
issn 2227-7390
language English
publishDate 2024-11-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-b6fec098339845668a9493bd6595ce7a2024-11-26T18:11:31ZengMDPI AGMathematics2227-73902024-11-011222346510.3390/math12223465Stability of Cauchy–Stieltjes Kernel Families by Free and Boolean Convolutions ProductAyed. R. A. Alanzi0Shokrya S. Alshqaq1Raouf Fakhfakh2Department of Mathematics, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi ArabiaDepartment of Mathematics, College of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi ArabiaDepartment of Mathematics, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi ArabiaLet <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="fraktur">F</mi><mrow><mo>(</mo><msub><mi>ν</mi><mi>j</mi></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>{</mo><msubsup><mi>Q</mi><mrow><msub><mi>m</mi><mi>j</mi></msub></mrow><msub><mi>ν</mi><mi>j</mi></msub></msubsup><mo>,</mo><mspace width="4pt"></mspace><mspace width="4pt"></mspace><mspace width="4pt"></mspace><msub><mi>m</mi><mi>j</mi></msub><mo>∈</mo><mrow><mo>(</mo><msubsup><mi>m</mi><mo>−</mo><msub><mi>ν</mi><mi>j</mi></msub></msubsup><mo>,</mo><msubsup><mi>m</mi><mo>+</mo><msub><mi>ν</mi><mi>j</mi></msub></msubsup><mo>)</mo></mrow><mo>}</mo></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></mrow></semantics></math></inline-formula>, be two Cauchy–Stieltjes Kernel (CSK) families induced by non-degenerate compactly supported probability measures <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ν</mi><mn>1</mn></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ν</mi><mn>2</mn></msub></semantics></math></inline-formula>. Introduce the set of measures <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">F</mi><mo>=</mo><mi mathvariant="fraktur">F</mi><mrow><mo>(</mo><msub><mi>ν</mi><mn>1</mn></msub><mo>)</mo></mrow><mo>⊞</mo><mi mathvariant="fraktur">F</mi><mrow><mo>(</mo><msub><mi>ν</mi><mn>2</mn></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>{</mo><msubsup><mi>Q</mi><mrow><msub><mi>m</mi><mn>1</mn></msub></mrow><msub><mi>ν</mi><mn>1</mn></msub></msubsup><mo>⊞</mo><msubsup><mi>Q</mi><mrow><msub><mi>m</mi><mn>2</mn></msub></mrow><msub><mi>ν</mi><mn>2</mn></msub></msubsup><mo>,</mo><mspace width="4pt"></mspace><mspace width="4pt"></mspace><mspace width="4pt"></mspace><msub><mi>m</mi><mn>1</mn></msub><mo>∈</mo><mrow><mo>(</mo><msubsup><mi>m</mi><mo>−</mo><msub><mi>ν</mi><mn>1</mn></msub></msubsup><mo>,</mo><msubsup><mi>m</mi><mo>+</mo><msub><mi>ν</mi><mn>1</mn></msub></msubsup><mo>)</mo></mrow><mspace width="4pt"></mspace><mspace width="4pt"></mspace><mrow><mi>a</mi><mi>n</mi><mi>d</mi></mrow><mspace width="4pt"></mspace><mspace width="4pt"></mspace><msub><mi>m</mi><mn>2</mn></msub><mo>∈</mo><mrow><mo>(</mo><msubsup><mi>m</mi><mo>−</mo><msub><mi>ν</mi><mn>2</mn></msub></msubsup><mo>,</mo><msubsup><mi>m</mi><mo>+</mo><msub><mi>ν</mi><mn>2</mn></msub></msubsup><mo>)</mo></mrow><mo>}</mo></mrow><mo>.</mo></mrow></semantics></math></inline-formula> We show that if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">F</mi></semantics></math></inline-formula> remains a CSK family, (i.e., <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">F</mi><mo>=</mo><mi mathvariant="fraktur">F</mi><mo>(</mo><mi>μ</mi><mo>)</mo></mrow></semantics></math></inline-formula> where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>μ</mi></semantics></math></inline-formula> is a non-degenerate compactly supported measure), then the measures <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>μ</mi></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ν</mi><mn>1</mn></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ν</mi><mn>2</mn></msub></semantics></math></inline-formula> are of the Marchenko–Pastur type measure up to affinity. A similar conclusion is obtained if we substitute (in the definition of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">F</mi></semantics></math></inline-formula>) the additive free convolution ⊞ by the additive Boolean convolution ⊎. The cases where the additive free convolution ⊞ is replaced (in the definition of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">F</mi></semantics></math></inline-formula>) by the multiplicative free convolution ⊠ or the multiplicative Boolean convolution ⨃ are also studied.https://www.mdpi.com/2227-7390/12/22/3465variance functionfree and Boolean convolutionsCauchy–Stieltjes transformMarchenko–Pastur law
spellingShingle Ayed. R. A. Alanzi
Shokrya S. Alshqaq
Raouf Fakhfakh
Stability of Cauchy–Stieltjes Kernel Families by Free and Boolean Convolutions Product
Mathematics
variance function
free and Boolean convolutions
Cauchy–Stieltjes transform
Marchenko–Pastur law
title Stability of Cauchy–Stieltjes Kernel Families by Free and Boolean Convolutions Product
title_full Stability of Cauchy–Stieltjes Kernel Families by Free and Boolean Convolutions Product
title_fullStr Stability of Cauchy–Stieltjes Kernel Families by Free and Boolean Convolutions Product
title_full_unstemmed Stability of Cauchy–Stieltjes Kernel Families by Free and Boolean Convolutions Product
title_short Stability of Cauchy–Stieltjes Kernel Families by Free and Boolean Convolutions Product
title_sort stability of cauchy stieltjes kernel families by free and boolean convolutions product
topic variance function
free and Boolean convolutions
Cauchy–Stieltjes transform
Marchenko–Pastur law
url https://www.mdpi.com/2227-7390/12/22/3465
work_keys_str_mv AT ayedraalanzi stabilityofcauchystieltjeskernelfamiliesbyfreeandbooleanconvolutionsproduct
AT shokryasalshqaq stabilityofcauchystieltjeskernelfamiliesbyfreeandbooleanconvolutionsproduct
AT raouffakhfakh stabilityofcauchystieltjeskernelfamiliesbyfreeandbooleanconvolutionsproduct