Sensitivity Assessment on Satellite Remote Sensing Estimates of Primary Productivity in Shelf Seas

The vertically generalized production model (VGPM) is one of the most important methods for estimating marine net primary productivity (PP) using remote sensing. However, different data sources and parameterization schemes of the input variables for the VGPM can introduce uncertainties to the model...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaolong Zhao, Jianan Sun, Qingjun Fu, Xiao Yan, Lei Lin
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Journal of Marine Science and Engineering
Subjects:
Online Access:https://www.mdpi.com/2077-1312/12/12/2146
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846104167323533312
author Xiaolong Zhao
Jianan Sun
Qingjun Fu
Xiao Yan
Lei Lin
author_facet Xiaolong Zhao
Jianan Sun
Qingjun Fu
Xiao Yan
Lei Lin
author_sort Xiaolong Zhao
collection DOAJ
description The vertically generalized production model (VGPM) is one of the most important methods for estimating marine net primary productivity (PP) using remote sensing. However, different data sources and parameterization schemes of the input variables for the VGPM can introduce uncertainties to the model results. This study compared the PP results from different data sources and parameterization schemes of three major input variables (i.e., chlorophyll-a concentration (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mrow><mi>o</mi><mi>p</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula>), euphotic depth (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>Z</mi><mrow><mi>e</mi><mi>u</mi></mrow></msub></mrow></semantics></math></inline-formula>), and maximum photosynthetic rate (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>P</mi><mrow><mi>o</mi><mi>p</mi><mi>t</mi></mrow><mi>B</mi></msubsup></mrow></semantics></math></inline-formula>)) and evaluated the sensitivity of VGPM in the Yellow and Bohai Seas on the inputs. The results showed that the sensitivity in the annual mean PP was approximately 40%. Seasonally, the sensitivity was lowest in the spring (35%), highest in the winter (70%), and approximately 60% in the summer and autumn. Spatially, the sensitivity in nearshore water (water depth < 40 m) was more than 60% and around two times higher than that in deep water areas. Nevertheless, all VGPM results showed a decline trend in the PP from 2003 to 2020 in the Yellow and Bohai Seas. The influence of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>P</mi><mrow><mi>o</mi><mi>p</mi><mi>t</mi></mrow><mi>B</mi></msubsup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mrow><mi>o</mi><mi>p</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula> was important for the magnitude of annual mean PP. The PP seasonal variation pattern was highly related to the parameterization scheme of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>P</mi><mrow><mi>o</mi><mi>p</mi><mi>t</mi></mrow><mi>B</mi></msubsup></mrow></semantics></math></inline-formula>, whereas the spatial distribution was mostly sensitive to the data sources of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mrow><mi>o</mi><mi>p</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula>.
format Article
id doaj-art-b6f82719e7d3497ebbd67cd2a6f3c8f7
institution Kabale University
issn 2077-1312
language English
publishDate 2024-11-01
publisher MDPI AG
record_format Article
series Journal of Marine Science and Engineering
spelling doaj-art-b6f82719e7d3497ebbd67cd2a6f3c8f72024-12-27T14:33:05ZengMDPI AGJournal of Marine Science and Engineering2077-13122024-11-011212214610.3390/jmse12122146Sensitivity Assessment on Satellite Remote Sensing Estimates of Primary Productivity in Shelf SeasXiaolong Zhao0Jianan Sun1Qingjun Fu2Xiao Yan3Lei Lin4North China Sea Marine Forecasting Center, Ministry of Natural Resources of the People’s Republic of China, Qingdao 266061, ChinaNingbo Yonghuanyuan Environmental Engineering and Technology Co., Ltd., Ningbo 315000, ChinaCollege of Ocean Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, ChinaCollege of Ocean Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, ChinaCollege of Ocean Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, ChinaThe vertically generalized production model (VGPM) is one of the most important methods for estimating marine net primary productivity (PP) using remote sensing. However, different data sources and parameterization schemes of the input variables for the VGPM can introduce uncertainties to the model results. This study compared the PP results from different data sources and parameterization schemes of three major input variables (i.e., chlorophyll-a concentration (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mrow><mi>o</mi><mi>p</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula>), euphotic depth (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>Z</mi><mrow><mi>e</mi><mi>u</mi></mrow></msub></mrow></semantics></math></inline-formula>), and maximum photosynthetic rate (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>P</mi><mrow><mi>o</mi><mi>p</mi><mi>t</mi></mrow><mi>B</mi></msubsup></mrow></semantics></math></inline-formula>)) and evaluated the sensitivity of VGPM in the Yellow and Bohai Seas on the inputs. The results showed that the sensitivity in the annual mean PP was approximately 40%. Seasonally, the sensitivity was lowest in the spring (35%), highest in the winter (70%), and approximately 60% in the summer and autumn. Spatially, the sensitivity in nearshore water (water depth < 40 m) was more than 60% and around two times higher than that in deep water areas. Nevertheless, all VGPM results showed a decline trend in the PP from 2003 to 2020 in the Yellow and Bohai Seas. The influence of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>P</mi><mrow><mi>o</mi><mi>p</mi><mi>t</mi></mrow><mi>B</mi></msubsup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mrow><mi>o</mi><mi>p</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula> was important for the magnitude of annual mean PP. The PP seasonal variation pattern was highly related to the parameterization scheme of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>P</mi><mrow><mi>o</mi><mi>p</mi><mi>t</mi></mrow><mi>B</mi></msubsup></mrow></semantics></math></inline-formula>, whereas the spatial distribution was mostly sensitive to the data sources of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mrow><mi>o</mi><mi>p</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2077-1312/12/12/2146shelf seamarine primary productivitysatellite remote sensingchlorophyll-a
spellingShingle Xiaolong Zhao
Jianan Sun
Qingjun Fu
Xiao Yan
Lei Lin
Sensitivity Assessment on Satellite Remote Sensing Estimates of Primary Productivity in Shelf Seas
Journal of Marine Science and Engineering
shelf sea
marine primary productivity
satellite remote sensing
chlorophyll-a
title Sensitivity Assessment on Satellite Remote Sensing Estimates of Primary Productivity in Shelf Seas
title_full Sensitivity Assessment on Satellite Remote Sensing Estimates of Primary Productivity in Shelf Seas
title_fullStr Sensitivity Assessment on Satellite Remote Sensing Estimates of Primary Productivity in Shelf Seas
title_full_unstemmed Sensitivity Assessment on Satellite Remote Sensing Estimates of Primary Productivity in Shelf Seas
title_short Sensitivity Assessment on Satellite Remote Sensing Estimates of Primary Productivity in Shelf Seas
title_sort sensitivity assessment on satellite remote sensing estimates of primary productivity in shelf seas
topic shelf sea
marine primary productivity
satellite remote sensing
chlorophyll-a
url https://www.mdpi.com/2077-1312/12/12/2146
work_keys_str_mv AT xiaolongzhao sensitivityassessmentonsatelliteremotesensingestimatesofprimaryproductivityinshelfseas
AT jianansun sensitivityassessmentonsatelliteremotesensingestimatesofprimaryproductivityinshelfseas
AT qingjunfu sensitivityassessmentonsatelliteremotesensingestimatesofprimaryproductivityinshelfseas
AT xiaoyan sensitivityassessmentonsatelliteremotesensingestimatesofprimaryproductivityinshelfseas
AT leilin sensitivityassessmentonsatelliteremotesensingestimatesofprimaryproductivityinshelfseas