Sensitivity Assessment on Satellite Remote Sensing Estimates of Primary Productivity in Shelf Seas
The vertically generalized production model (VGPM) is one of the most important methods for estimating marine net primary productivity (PP) using remote sensing. However, different data sources and parameterization schemes of the input variables for the VGPM can introduce uncertainties to the model...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-11-01
|
Series: | Journal of Marine Science and Engineering |
Subjects: | |
Online Access: | https://www.mdpi.com/2077-1312/12/12/2146 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The vertically generalized production model (VGPM) is one of the most important methods for estimating marine net primary productivity (PP) using remote sensing. However, different data sources and parameterization schemes of the input variables for the VGPM can introduce uncertainties to the model results. This study compared the PP results from different data sources and parameterization schemes of three major input variables (i.e., chlorophyll-a concentration (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mrow><mi>o</mi><mi>p</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula>), euphotic depth (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>Z</mi><mrow><mi>e</mi><mi>u</mi></mrow></msub></mrow></semantics></math></inline-formula>), and maximum photosynthetic rate (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>P</mi><mrow><mi>o</mi><mi>p</mi><mi>t</mi></mrow><mi>B</mi></msubsup></mrow></semantics></math></inline-formula>)) and evaluated the sensitivity of VGPM in the Yellow and Bohai Seas on the inputs. The results showed that the sensitivity in the annual mean PP was approximately 40%. Seasonally, the sensitivity was lowest in the spring (35%), highest in the winter (70%), and approximately 60% in the summer and autumn. Spatially, the sensitivity in nearshore water (water depth < 40 m) was more than 60% and around two times higher than that in deep water areas. Nevertheless, all VGPM results showed a decline trend in the PP from 2003 to 2020 in the Yellow and Bohai Seas. The influence of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>P</mi><mrow><mi>o</mi><mi>p</mi><mi>t</mi></mrow><mi>B</mi></msubsup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mrow><mi>o</mi><mi>p</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula> was important for the magnitude of annual mean PP. The PP seasonal variation pattern was highly related to the parameterization scheme of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>P</mi><mrow><mi>o</mi><mi>p</mi><mi>t</mi></mrow><mi>B</mi></msubsup></mrow></semantics></math></inline-formula>, whereas the spatial distribution was mostly sensitive to the data sources of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mrow><mi>o</mi><mi>p</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula>. |
---|---|
ISSN: | 2077-1312 |