An Analysis of RF On-Chip Antennas in Si-Based Integrated Microwave Photonics

We investigate the monolithicintegration of RF antennas onto a silicon-based integrated microwave photonics (IMWP) chip for short-range millimeter-wave (mmW) communication. The unification of antenna with photonic integrated circuits (PICs) reduces system loss for high data rate communication by eli...

Full description

Saved in:
Bibliographic Details
Main Authors: Ajaypal Singh Dhillon, Bahaa Radi, Odile Liboiron-Ladouceur
Format: Article
Language:English
Published: IEEE 2021-01-01
Series:IEEE Photonics Journal
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9366917/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate the monolithicintegration of RF antennas onto a silicon-based integrated microwave photonics (IMWP) chip for short-range millimeter-wave (mmW) communication. The unification of antenna with photonic integrated circuits (PICs) reduces system loss for high data rate communication by eliminating parasitic interconnects. This integration of electronics (antenna) with photonics will be a key milestone leading to increased bandwidth capability and ubiquitous wireless links for emerging applications such as 5G, Internet of Things (IoT), autonomous vehicles, high data rate point-to-point communication, and wireless sensors. Through simulation above 20 GHz, we compare the transmission of three on-chip antenna structures designed in a commercial silicon photonics (SiPh) process and consider them for both inter and intra-chip communication. Results provide insight on the transmission gain variations relative to the antenna orientation from their distinct radiation pattern. The folded monopole structure provides superior gain, smaller footprint with layout flexibility, and good transmission spectrum. The analysis supports the idea of a monolithic mmW transmitter integrated with on-chip antennas on IMWP chip.
ISSN:1943-0655