Hyers–Ulam Stability for Quantum Equations of Euler Type
Many applications using discrete dynamics employ either q-difference equations or h-difference equations. In this work, we introduce and study the Hyers–Ulam stability (HUS) of a quantum (q-difference) equation of Euler type. In particular, we show a direct connection between quantum equations of Eu...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | Discrete Dynamics in Nature and Society |
Online Access: | http://dx.doi.org/10.1155/2020/5626481 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Many applications using discrete dynamics employ either q-difference equations or h-difference equations. In this work, we introduce and study the Hyers–Ulam stability (HUS) of a quantum (q-difference) equation of Euler type. In particular, we show a direct connection between quantum equations of Euler type and h-difference equations of constant step size h with constant coefficients and an arbitrary integer order. For equation orders greater than two, the h-difference results extend first-order and second-order results found in the literature, and the Euler-type q-difference results are completely novel for any order. In many cases, the best HUS constant is found. |
---|---|
ISSN: | 1026-0226 1607-887X |