<inline-formula><tex-math notation="LaTeX">$\mathcal {H}_{2}$</tex-math></inline-formula>- and <inline-formula><tex-math notation="LaTeX">$\mathcal {H}_\infty$</tex-math></inline-formula>-Optimal Model Predictive Controllers for Robust Legged Locomotion

This paper formally develops robust optimal predictive control solutions that can accommodate disturbances and stabilize periodic legged locomotion. To this end, we build upon existing optimization-based control paradigms, particularly quadratic programming (QP)-based model predictive controllers (M...

Full description

Saved in:
Bibliographic Details
Main Authors: Abhishek Pandala, Aaron D. Ames, Kaveh Akbari Hamed
Format: Article
Language:English
Published: IEEE 2024-01-01
Series:IEEE Open Journal of Control Systems
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10543084/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841554060838174720
author Abhishek Pandala
Aaron D. Ames
Kaveh Akbari Hamed
author_facet Abhishek Pandala
Aaron D. Ames
Kaveh Akbari Hamed
author_sort Abhishek Pandala
collection DOAJ
description This paper formally develops robust optimal predictive control solutions that can accommodate disturbances and stabilize periodic legged locomotion. To this end, we build upon existing optimization-based control paradigms, particularly quadratic programming (QP)-based model predictive controllers (MPCs). We present conditions under which the closed-loop reduced-order systems (i.e., template models) with MPC have the continuous differentiability property on an open neighborhood of gaits. We then linearize the resulting discrete-time, closed-loop nonlinear template system around the gait to obtain a linear time-varying (LTV) system. This periodic LTV system is further transformed into a linear system with a constant state-transition matrix using discrete-time Floquet transform. The system is then analyzed to accommodate parametric uncertainties and to synthesize robust optimal <inline-formula><tex-math notation="LaTeX">$\mathcal {H}_{2}$</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">$\mathcal {H}_\infty$</tex-math></inline-formula> feedback controllers via linear matrix inequalities (LMIs). The paper then extends the theoretical results to the single rigid body (SRB) template dynamics and numerically verifies them. The proposed robust optimal predictive controllers are used in a layered control structure, where the optimal reduced-order trajectories are provided to a full-order nonlinear whole-body controller (WBC) for tracking at the low level. The developed layered controllers are numerically and experimentally validated for the robust locomotion of the A1 quadrupedal robot subject to various disturbances and uneven terrains. Our numerical results suggest that the <inline-formula><tex-math notation="LaTeX">$\mathcal {H}_{2}$</tex-math></inline-formula>- and <inline-formula><tex-math notation="LaTeX">$\mathcal {H}_\infty$</tex-math></inline-formula>-optimal MPC controllers significantly improve the robust stability of the gaits compared to the normal MPC.
format Article
id doaj-art-b6c0b9bc9246411c9e69621d8fa9ad80
institution Kabale University
issn 2694-085X
language English
publishDate 2024-01-01
publisher IEEE
record_format Article
series IEEE Open Journal of Control Systems
spelling doaj-art-b6c0b9bc9246411c9e69621d8fa9ad802025-01-09T00:03:03ZengIEEEIEEE Open Journal of Control Systems2694-085X2024-01-01322523810.1109/OJCSYS.2024.340799910543084<inline-formula><tex-math notation="LaTeX">$\mathcal {H}_{2}$</tex-math></inline-formula>- and <inline-formula><tex-math notation="LaTeX">$\mathcal {H}_\infty$</tex-math></inline-formula>-Optimal Model Predictive Controllers for Robust Legged LocomotionAbhishek Pandala0https://orcid.org/0000-0002-7424-5508Aaron D. Ames1https://orcid.org/0000-0003-0848-3177Kaveh Akbari Hamed2https://orcid.org/0000-0001-9597-1691Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, USADepartment of Mechanical and Civil Engineering, California Institute of Technology, Pasadena, CA, USADepartment of Mechanical Engineering, Virginia Tech, Blacksburg, VA, USAThis paper formally develops robust optimal predictive control solutions that can accommodate disturbances and stabilize periodic legged locomotion. To this end, we build upon existing optimization-based control paradigms, particularly quadratic programming (QP)-based model predictive controllers (MPCs). We present conditions under which the closed-loop reduced-order systems (i.e., template models) with MPC have the continuous differentiability property on an open neighborhood of gaits. We then linearize the resulting discrete-time, closed-loop nonlinear template system around the gait to obtain a linear time-varying (LTV) system. This periodic LTV system is further transformed into a linear system with a constant state-transition matrix using discrete-time Floquet transform. The system is then analyzed to accommodate parametric uncertainties and to synthesize robust optimal <inline-formula><tex-math notation="LaTeX">$\mathcal {H}_{2}$</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">$\mathcal {H}_\infty$</tex-math></inline-formula> feedback controllers via linear matrix inequalities (LMIs). The paper then extends the theoretical results to the single rigid body (SRB) template dynamics and numerically verifies them. The proposed robust optimal predictive controllers are used in a layered control structure, where the optimal reduced-order trajectories are provided to a full-order nonlinear whole-body controller (WBC) for tracking at the low level. The developed layered controllers are numerically and experimentally validated for the robust locomotion of the A1 quadrupedal robot subject to various disturbances and uneven terrains. Our numerical results suggest that the <inline-formula><tex-math notation="LaTeX">$\mathcal {H}_{2}$</tex-math></inline-formula>- and <inline-formula><tex-math notation="LaTeX">$\mathcal {H}_\infty$</tex-math></inline-formula>-optimal MPC controllers significantly improve the robust stability of the gaits compared to the normal MPC.https://ieeexplore.ieee.org/document/10543084/Nonlinear systems and controloptimal controlroboticsrobust controlstability of nonlinear systems
spellingShingle Abhishek Pandala
Aaron D. Ames
Kaveh Akbari Hamed
<inline-formula><tex-math notation="LaTeX">$\mathcal {H}_{2}$</tex-math></inline-formula>- and <inline-formula><tex-math notation="LaTeX">$\mathcal {H}_\infty$</tex-math></inline-formula>-Optimal Model Predictive Controllers for Robust Legged Locomotion
IEEE Open Journal of Control Systems
Nonlinear systems and control
optimal control
robotics
robust control
stability of nonlinear systems
title <inline-formula><tex-math notation="LaTeX">$\mathcal {H}_{2}$</tex-math></inline-formula>- and <inline-formula><tex-math notation="LaTeX">$\mathcal {H}_\infty$</tex-math></inline-formula>-Optimal Model Predictive Controllers for Robust Legged Locomotion
title_full <inline-formula><tex-math notation="LaTeX">$\mathcal {H}_{2}$</tex-math></inline-formula>- and <inline-formula><tex-math notation="LaTeX">$\mathcal {H}_\infty$</tex-math></inline-formula>-Optimal Model Predictive Controllers for Robust Legged Locomotion
title_fullStr <inline-formula><tex-math notation="LaTeX">$\mathcal {H}_{2}$</tex-math></inline-formula>- and <inline-formula><tex-math notation="LaTeX">$\mathcal {H}_\infty$</tex-math></inline-formula>-Optimal Model Predictive Controllers for Robust Legged Locomotion
title_full_unstemmed <inline-formula><tex-math notation="LaTeX">$\mathcal {H}_{2}$</tex-math></inline-formula>- and <inline-formula><tex-math notation="LaTeX">$\mathcal {H}_\infty$</tex-math></inline-formula>-Optimal Model Predictive Controllers for Robust Legged Locomotion
title_short <inline-formula><tex-math notation="LaTeX">$\mathcal {H}_{2}$</tex-math></inline-formula>- and <inline-formula><tex-math notation="LaTeX">$\mathcal {H}_\infty$</tex-math></inline-formula>-Optimal Model Predictive Controllers for Robust Legged Locomotion
title_sort inline formula tex math notation latex mathcal h 2 tex math inline formula and inline formula tex math notation latex mathcal h infty tex math inline formula optimal model predictive controllers for robust legged locomotion
topic Nonlinear systems and control
optimal control
robotics
robust control
stability of nonlinear systems
url https://ieeexplore.ieee.org/document/10543084/
work_keys_str_mv AT abhishekpandala inlineformulatexmathnotationlatexmathcalh2texmathinlineformulaandinlineformulatexmathnotationlatexmathcalhinftytexmathinlineformulaoptimalmodelpredictivecontrollersforrobustleggedlocomotion
AT aarondames inlineformulatexmathnotationlatexmathcalh2texmathinlineformulaandinlineformulatexmathnotationlatexmathcalhinftytexmathinlineformulaoptimalmodelpredictivecontrollersforrobustleggedlocomotion
AT kavehakbarihamed inlineformulatexmathnotationlatexmathcalh2texmathinlineformulaandinlineformulatexmathnotationlatexmathcalhinftytexmathinlineformulaoptimalmodelpredictivecontrollersforrobustleggedlocomotion